

Fig. 015 components of a CVC set

Puncture of internal jugular vein

- · lateral positioning of the head
- puncture site
 - based on landmark ("blind technique"):
 - lateral to the palpable carotid artery
 - Normally, the internal jugular vein is located lateral to the common carotid artery. There are, however, a number of abnormal positions so that this rule is not valid in 30% of the cases.
 - Moreover, this rule only applies if the head lies in a straight position. The head is often turned to the side during CVC insertion. In this position the vein is often directly anterior to the artery and therefore ventral instead of lateral to the artery.
 - lead structure: medial edge of the sternocleidomastoid muscle
 - based on sonography (ultrasound guided; at best!)
 - application of a sterile cover over probe (transducer) and cable (A sterile glove as cover is hygienically not sufficient!), use of sterile ultrasound gel or skin disinfectant
 - 7.5 MHz transducer (linear array probe)
 - compression ultrasonography (B-mode image): The vein can be compressed, but not the artery.
 - i.a. exclusion of thrombus
 - In our intensive care unit we almost exclusively perform insertions of CVC or Shaldon catheter into the internal jugular vein only under sonographic control (ultrasound guided): The puncture takes places under visual control and typically requires rarely more than one attempt (even in obese patients). Also, it is not uncommon to incidentally discover a thrombus in the internal jugular vein (especially in case of a previously inlying CVC) which would not be seen otherwise without ultrasonography and which would then be pushed further along by the guide wire or the dilator (risk of pulmonary embolism). One can certainly also drive at night without light: If you know the way, you probably also get to the intended destination. However if your car has headlights, you can also simply switch them on: So you can see exactly where you are going! The use of ultrasound for the

insertion of a CVC is also highly recommended in the European Guideline for Interventional Ultrasound 2016 (EFSUMB: European Federation of Societies for Ultrasound in Medicine and Biology).

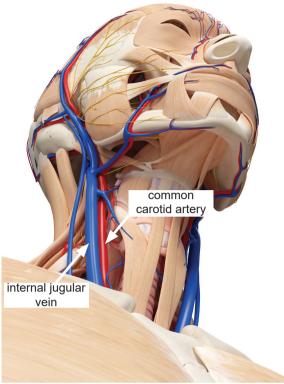
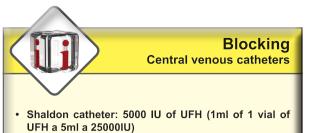



Fig. 016 Schematic representation of the anatomy

- atrial catheter: 15000 IU of UFH (3ml of 1 vial of UFH a 5ml a 25000IU)
- port (port-a-cath system): 10ml of normal saline + 2000IU of UFH
- CVC: only flush with 20ml of normal saline (without heparin)
- CeVOX probe: 500ml of Ringer solution + 5000 IU of UFH (infusion rate 10 ml/h)

Excursus: Intranasal drug application

Definition

- The drug is absorbed in the olfactory region by the mucous membrane.
- especially recommended if intravenous access is difficult or impossible:
 - seizures (especially in children)
 - pain (especially suitable for children, e.g. for pain treatment in case of burns / scalding [An out-of-hospital placement of an intravenous access is rarely necessary in these cases!)
 - aggressiveness (e.g. intoxicated patient who flails around and can only be held down by several persons [recommendation: A intranasal application of 15 mg midazolam])
 - heroin intoxication (intranasal application of the antidote naloxone)
- apply drugs with a 2 ml syringe (max. 1 ml per nostril [otherwise it runs back down the throat and would be swallowed]), always spread on both nostrils (larger absorption surface and therefore faster absorption)
- only use highly concentrated drug solutions (no dilutions), e.g. midazolam 5 mg/ml (not 1 mg/ml), ketamine 50 mg/ml or S-ketamine 25 mg/ml
- especially suitable for low-molecular and lipophilic drugs
- phases of absorption:
 - early phase: nasal absorption
 - late phase: gastrointestinal absorption (because a certain amount is always swallowed)
- · not effective in sniff or nosebleed (epistaxis)
- The intranasal application of a drug, however, constitutes an off-label-use.

Intranasal drug application: first choice (especially out-of-hospital) in children (especially for treatment of seizures or pain; except for life-threatening cases: here intraosseous access!)

Applicators

- MAD (mucosal atomization device; the most common system): The applicator is inserted into the nose. The drug is then administered intranasally (Fine nozzles at the top cause the atomization).
- Carpuject
- OptiNose
- Accuspray Nasal Automizer

Fig. 033 MAD (mucosal atomization device): for the intranasal application of drugs

Fig. 034 Today, intranasal administration (here by MAD) is the first choice out-of-hospital drug application in children in emergency cases (exception: lifethreatening situations such as shock or resuscitation \rightarrow here intraosseous access [no intravenous access] recommended); special thanks to my little daughter Lena

Dosage

- midazolam: 1 ml = 5 mg (always take the highly concentrated vial with 0.5 mg/kg; the solution is rather salty and acidic so that an unpleasant burning sensation in the nose might be felt; often second peak following gastrointestinal absorption)
- < 50 kg: 2.5 mg (0.5 ml [vial 1ml = 5mg]; 0.2 mg/kg)
- > 50 kg: 5 mg (1 ml)
- fentanyl: 1 ml = 0.05 mg, 2 µg/kg (0.04 ml/kg; titration)
- sufentanil: 1 ml = 0.05 mg, 2 µg/kg (0.04 ml/kg; titration)
- morphine: 1 ml = 10 mg, 0.1 mg/ml
- ketamine: 1 ml = 50 mg, 50 mg (apply 1 ml); 1-5 mg/kg (0.02-0.10 ml/kg)
- S-ketamine (Esketamin): 1 ml = 25 mg, 25 mg (apply 1ml); 2,5-5.5 mg/kg (0,1-0,2 ml/kg)
- naloxone: 1 ml = 0.4 mg, 0.4-0.8 mg (1-2 ml)
- flumazenil: 1 ml = 0.1 mg
- glucagon (e.g. in the case of hypoglycemia if no venous access is possible): can also be administered intranasally instead of i.v. (dosage: 2 mg dissolved in 1 ml of liquid)

our hospital sufentanil + propofol via perfusor)

- Three substances are required for anesthesia induction:

 - analgesic
 - hypnotic (sedative)

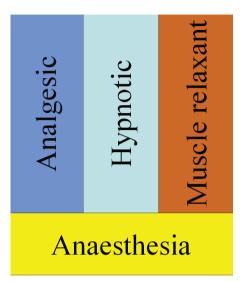


Fig. 069 components of anesthesia

Anesthesia is obligatory for intubation (except in cardiac arrest)!

Muscle relaxants

Definition

- syn.: neuromuscular blocking agents (NMBA)
- substances that are blocking the acetylcholine receptors (postsynaptic, nicotinic) at the neuromuscular junction
- indication: Muscle relaxants are mainly used for anesthesia induction (intubation) as well as perioperatively in the operating room. Muscle relaxants are rarely used in the intensive care unit (except for anesthesia induction for intubation):
 - to facilitate ventilation: You can use them when the patient cannot be sufficiently mechanically ventilated even though the mechanical ventilation has been adapted and the ventilation mode has already been changed. Sufficient analgesia and sedation is always the prerequisite. Muscle relaxants are never an alternative to analgosedation!
 - during invasive procedures (e.g. tracheotomy, exchange of the endotracheal tube)
 - early stage (< 48h) of severe ARDS (Horovitz index [paO₂/FiO₂] < 150 mmHg; but only optional)
- relaxometry: Whenever there is a long term medication with muscle relaxants, the effects should be monitored

by relaxometry. Two transcutaneous electrodes are attached to the distal forearm above the ulnar nerve. Then, the muscle contractions of the hand are measured. There are various stimulation patterns. The most commonly used stimulation pattern is TOF ("train of four"), in which a series of 4 stimuli are given at a frequency of 2 Hertz.

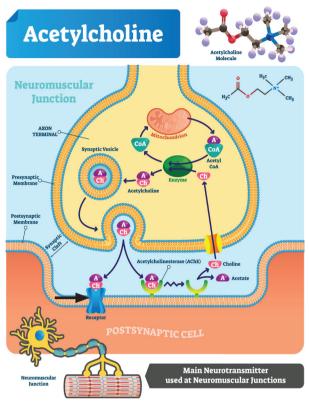
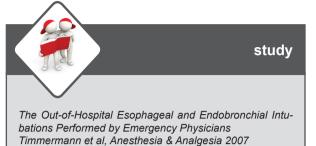



Fig. 070 Muscle relaxants block the acetylcholine receptors (see arrow) of the postsynaptic cell at the neuromuscular junction.

Fig. 071 TOF relaxometry

- expected
- unexpected (mostly in emergency and intensive care medicine)
- If the intubation was difficult, the patient should be handed out an anesthesia emergency card (e.g. at hospital discharge) with the corresponding grade of Cormack-Lehane classification.

- · prospective observational study
- 149 patients (out-of-hospital intubation by primary emergency physicians on site)
- subsequently evaluated by study physicians (laryngoscopy, esophageal detector device, capnometry)
- Incorrect intubation in 17%
 - one-sided in 10% (i.e. endobronchial instead of endotracheal)
 - esophageal in 7%
- approximately 3000 deaths in Germany due to incorrect intubation by emergency physicians (statistical projection)

Fig. 102 If a patient was difficult to intubate, the tube is provided with a red warning tape ("difficult airway") in the intensive care unit.

Classifications

- · difficulty levels of laryngoscopy
 - prediction by Mallampati classification (beforehand; see infobox)
 - classification by Cormack-Lehane (afterwards; see infobox)
- MACOCHA score: used to identify patients with an increased risk of difficult intubation (according to de Jong et al, AJRCC 2013; see infobox)

The patient is asked in a sitting posture to open the mouth and to protrude the tongue as much as possible (without phonation). The score depends on which structures then are visible (base of the uvula, fauces, pillars [the arches in front of and behind the tonsils] and soft palate)

class I	all the structures (soft palate, uvula [completely], fauces, pillars [both arches]) are visible
class II	soft palate, uvula (incompletely, but the major part) and only the arch in front of the tonsils fauces are visi-
	ble
class III	only the soft palate and the base of uvula are visible
class IV	only the hard palate is visible

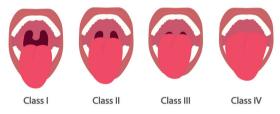


Fig. 103 Mallampati classification

Fig. 104 Cormack-Lehane classification

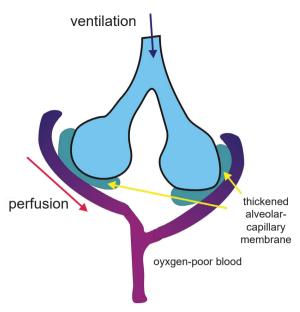
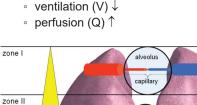
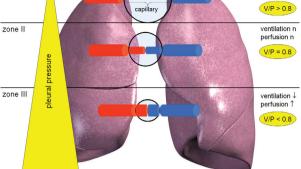


Fig. 171 impairment of diffusion in case of pulmonary edema (thickened alveolar-capillary membrane)




Typical example for a diffusion impairment: pulmonary edema!

Distribution

Definition

- ratio between ventilation (V) and perfusion (Q) in the lung
 - alveolar ventilation (V_A) in adults: 4-5 l/ min
 - lung perfusion (Q; = cardiac output): 5 l/min
- standard value (ventilation-perfusion ratio): V/Q = 0.8
- The ventilation-perfusion ratio determines the gas exchange in any lung area.
- · gravity dependent changes:
 - Perfusion <u>in</u>creases from apical to basal (see 3-zones-model of perfusion according to West [page 95].
 - Ventilation <u>de</u>creases from apical to basal (see page 90). That is because the pleural pressure increases due to gravity and the weight of the lung from apical to basal so that the alveoli get more and more compressed.
- 3 zones (annotation: This applies to the upright position. In supine position the same changes apply from ventral to dorsal instead of from apical to basal.):
 - zone I (apical zone): ventilation perfusion ratio V/Q
 - ↑ (> 0.8) because
 - ventilation (V) \uparrow
 - \circ perfusion (Q) \downarrow
 - zone II (middle zone): ventilation perfusion ratio V/Q normal (0.8) because
 - ventilation (V) normal
 - perfusion (Q) normal
 - zone III (basal zone): ventilation perfusion ratio V/Q \downarrow (< 0.8) because

ventilation ↑ perfusion ↓

Fig. 172 3-zones-model of ventilation and perfusion in one figure projected on top of each other: Ventilation decreases from apical to basal, perfusion increases from apical to basal. Both is caused by gravity. In zone I (apical zone) the ventilation is increased, the perfusion is decreased. Therefore the ventilation perfusion ratio V/Q here is increased (> 0.8 [dead space]). In zone II (middle zone) both ventilation and perfusion and therefore the ventilation perfusion ratio V/Q are normal (0.8). In zone III (basal zone) the ventilation is decreased and perfusion increased. Accordingly the ventilation perfusion ratio V/Q here is decreased (< 0.8 [shunt]). This applies to the upright position. In supine position the same changes apply from ventral to dorsal instead of from apical to basal.

Euler-Liljestrand mechanism

- named after the Swedish physiologist Ulf von Euler (1905-1983) and the Swedish pharmacologist Goeran Liljestrand (1886-1968)
- syn.: hypoxic pulmonary vasoconstriction (HPV)
- Regional alveolar hypoventilation causes reflexive vasoconstriction in the affected area.
- significance: Blood from poorly ventilated lung areas is redistributed to better ventilated areas. The Euler-Liljestrand mechanism is a physiological mechanism to reduce shunt (which is the main pathomechanism of lung failure): Alveoli which are not ventilated any longer should not been perfused any longer.
- Hypocapnia (direct vasodilatation also in hypoxic areas) and hypercapnia (direct vasoconstriction in wellventilated lung areas) inhibit the Euler-Liljestrand mechanism.
- The Euler-Liljestrand mechanism may reduce shunt a little, but not completely: Lack of perfusion in a nonventilated area of the lung (e.g. pneumonia in the right upper lobe) would cause a massive increase of the right ventricular afterload (increase of pulmonary artery pressure; similar to pulmonary embolism) and lead to an acute right heart failure.

Extreme cases

- V/Q < 0.8: shunt (Lung areas are perfused, but not ventilated.), especially in West zone III
- V/Q > 0.8: dead space (Lung areas are ventilated, but not perfused.), especially in West zone I

on; VC-CMV: volume-controlled continuous mechanical ventilation)

Pressure-controlled ventilation (PCV)

- standard mode of ventilation in Europe
- There is no evidence that pressure-controlled ventilation is better than volume-controlled ventilation (i.a. Esteban et al, Chest 2000; Branson et al, Resp Care 2007; Chacko et al, Cochrane Database Syst Rev 2015).
- The ventilator delivers the breathing gas during the set inspiratory time with a constant, preset pressure (with a decelerating flow).
- pressure constant ventilation (constant pressure levels): The pressure is maintained during the whole inspiration.
- The resulting volume (tidal volume $[V_{\mbox{\tiny T}}])$ is determined by:
 - pressure difference ("driving pressure") between the inspiratory pressure (IPAP [inspiratory positive airway pressure]) and the expiratory pressure (PEEP [positive end-expiratory pressure])
 - resistance and compliance of the respiratory system (lung, chest)
 - inspiratory time
- · The ventilation pressure determines the tidal volume.
- lower risk of barotrauma (e.g. pneumothorax) than with volume-controlled ventilation since pressures peaks are avoided
- In the beginning of the respiratory cycle the set pressure is tried to be achieved with a high flow. In the further course the flow is decreased by the internal control (decelerating flow) so that pressure peaks are avoided. In a pressure-controlled ventilation there is no distinction between peak pressure and plateau pressure, nor is there any plateau.
- · ventilation parameters:
 - primary (independent): pressure (ventilation pressure)
- secondary (dependent): volume (tidal volume $[V_{T}]$) settings:
 - inspiratory pressure (IPAP [inspiratory positive airway pressure])
 - PEEP (positive end-expiratory pressure)
 - respiratory rate
 - I:E ratio
 - RMV monitoring
- pressure alarm for monitoring of patient-induced pressure increases (e.g. coughing, "pressing")
- A drop of the tidal volume can be caused by:
 - airway obstruction, kinking of tube, cuff hernia
 - increased airway resistance
 - decreased elasticity (compliance) of the lungs or chest
 - coughing / "pressing" of the patient

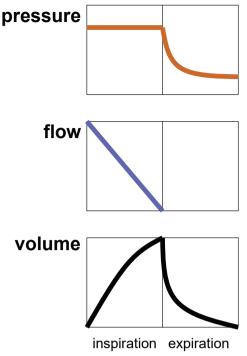


Fig. 196 pressure-controlled ventilation (PCV)

Volume-controlled ventilation (VCV)

- standard mode of ventilation in America (USA)
- The ventilator delivers a preset tidal volume (V_{T}) within the set inspiratory time (with a constant flow).
- syn.: IPPV (intermittent positive pressure ventilation)
- volume constant ventilation (constant volume level)
- The resulting pressure (ventilation pressure) is determined by:
 - tidal volume
 - resistance and compliance of the respiratory system (lung, chest)
 - inspiratory time
- The tidal volume determines the ventilation pressure.
- · ventilation parameters:
 - primary (independent): volume (tidal volume [V_T])
 - secondary (dependent): pressure (ventilation pressure)
- settings:
 - tidal volume (V_T)
 - respiratory rate
 - I:E ratio
 - inspiratory flow
 - flow rate (common approximately 30 l/min)
 - velocity of the ventilator emitting the breathing gas during inspiration (syn.: peak flow; unit: I/ min)
 - The higher the inspiratory flow, the higher is the ventilation pressure (peak pressure). High flow rates induce turbulences which heighten the airway resistance.
 - flow profiles (patterns)
 - constant ("rectangle" flow; standard today)

creasing diameter (note: Nowadays however, singledilator systems [e.g. Ciaglia Blue Rhino] are the standard.)

- · always under bronchoscopic control (alternative: ultrasound control [linear transducer; i.a. Alansari et al, Crit Care 2015; Gobatto et al, J Crit Care 2015] possible; in the TRACHUS study [Gobatto et al, Intensive Care Med 2016] it was shown that with exclusively ultrasound control there were not more complications than under exclusively bronchoscopic control.)
- insertion of the tracheal cannula

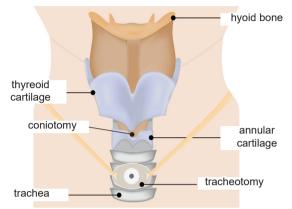
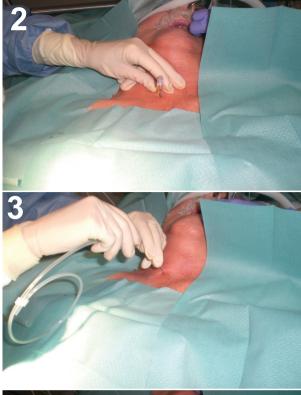



Fig. 290 Schematic representation of the anatomy: Tracheotomy is performed between the 2nd and 3rd tracheal ring. Coniotomy, on the other hand, is performed further cranially: between the thyroid and cricoid cartilage (cricothyreoid membrane).

Fig. 291 tracheal cannula (tracheostomy tube) with accessories [32]

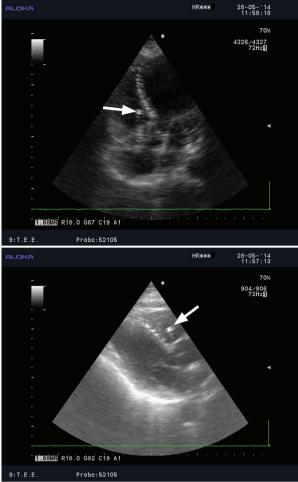


Fig. 380 As an option in difficult PAC insertion, echocardiography is helpful for orientation and control: Here, for example, the tip of the PAC is located in the right ventricle (arrow).

Pressure curves

- superior caval vein (SVC) / right atrium (RA): typically tripartite (three peaks), respiratory dependent, mean pressure 2-6 mmHg
- right ventricle (RV): systolic peaks 15-30 mmHg, diastolic values towards 0 mmHg
- pulmonary artery (PA): same systolic pressure as in the right ventricle, but increased diastolic pressure
- wedge position (PCWP): decrease of pressure level (usually slightly below the diastolic pressure of the pulmonary artery [PA_{dias}], flattening of the curve (disappearance of systolic pressure peaks; curve appears "damped")
 - flat
 - respiratory dependent
- After unblocking the balloon, the pressure of the pulmonary artery (PA) curve appears again.

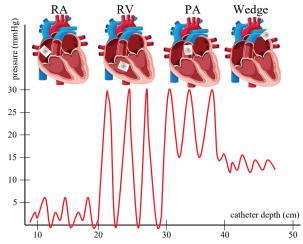


Fig. 381 the different pressure curves when the pulmonary artery catheter is inserted (RA: right atrium; RV: right ventricle; PA: pulmonary artery; Wedge: PCWP)

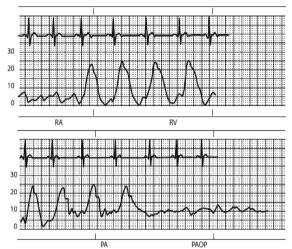


Fig. 382 pulmonary artery catheter: pressure curves (top RA, then RV; bottom PA, then wedge position [PAOP = PCWP]) [14]

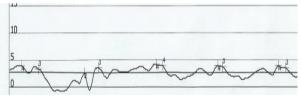


Fig. 383 pressure curve of the right atrium (RA): typical tripartite, low pressures (2-6 mmHg)

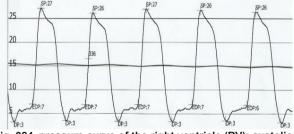
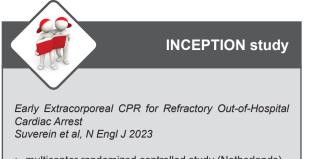


Fig. 384 pressure curve of the right ventricle (RV): systolic pressure 15-30 mmHg, diastolic towards 0 mmHg (typical for a ventricular pressure curve)

- suctioning for max. 5 seconds
- maximum suction: 0.2 mbar
- keep warm (wrap in a warmed towel; switch on the heating of the neonatal crash cart [37.5°C]; after successful resuscitation, however, switch off the heating in the post-resuscitation phase)
- no shaking (be aware of shaking trauma with rupture of the bridging veins and consecutive subdural hematoma [for picture of an autopsy specimen see page 1431])
- cutting the cord after 1 minute at the earliest (10 cm away from the child)
- in refractory cases consider extracorporeal life support (ECMO) at an early stage

Fig. 503 neonatal crash cart


Fig. 504 suction: only if the airways are blocked, only orally (not nasally) and only in the anterior part of the mouth!

Chest compression

- Indication: heart rate < 60/min (despite adequate mask ventilation) and absence of vital signs (applies until puberty)
- techniques:
 - two-thumb technique (both thumbs; 🛆 more effective [Udassi et al, Resuscitation 2010]!)
- two-finger technique
- · pressure point: lower third of the sternum
- depth of pressure:
 - 1/3 of the diameter of the chest
 - depth 4-5 cm (< 12 months: 4 cm, > 12 months: 5 cm)
 - One must always press relatively deeply ("tennis ball" deep). Mostly, out of fear of hurting the child, unfortunately only much too shallow pressure is applied! The chest of newborns is very elastic.
- ratio chest compression to ventilation:
 - newborns (first 4 weeks): 3:1 (note: According to the recommendation of the GRC [German Resuscitation Council] 2018 and of the ERC [European Resuscitation Council] 2021, the ratio 3:1 should only be applied immediately postnatal, i.e. in the delivery room, in emergency medical service or in the case of a home birth. Otherwise, the ratio 15:2 should also be applied in the newborn age.)
 - children (from 4 weeks [or from leaving the delivery room] until puberty [12-14 years]; new ERC 2021: up to the age of 18): 15:2
 - from puberty signs (e.g. pubic hair, breast development) according to ERC 2015 or from the age of 18 according to ERC 2021: 30:2 (like adults [Adolescents who look like adults can also be treated according to the adult algorithm.])
- A even when intubated stop chest compressions during mechanical ventilation (no chest compressions during mechanical ventilation)
- frequency:
 - newborns: 120/min (2 times per second)
 - infants / children: 100-120/min (like adults)
- mechanical resuscitation alternatives (e.g. LUCAS): not recommended for children

The most important thing in resuscitation of newborns is ventilation and not chest compression! Therefore the ratio chest compression to ventilation with 3:1 instead of 15:2 is also shifted in favor of ventilation!

- multicenter randomized controlled study (Netherlands)
- 134 patients with witnessed (bystander CPR carried out) refractory (no ROSC within 15 minutes) out-of-hospital cardiac arrest (r-OHCA) with ventricular fibrillation
 - with va-ECMO (eCPR)
 - without va-ECMO (conventional resuscitation)
- CPC score 1-2 P.] after 30 days)

ECMO is usually installed with ongoing resuscitation in the emergency room of the target hospital. It is also already possible to implant ECMO out-of-hospital. Corresponding projects are currently already being carried out, including the RECA study (Regensburg ECLS for Cardiac Arrest): Here, in the event of a cardiac arrest, the ECMO team (anesthesiologist and perfusionist) is already requested in the emergency medical service in parallel with the emergency physician. Indications for prehospital ECMO implantation here are:

- observed cardiac arrest including already performed bystander CPR
- still no ROSC after 5-10 minutes of CPR
- age < 70 years (relative; the biological age is decisive)

The duration of cannulation (veno-arterial; mostly bifemoral) and ECMO connection is approximately 10-15 minutes. At best, the cannulation is performed with ultrasound control. 5000 IU of unfractionated heparin is administered intravenously. From then on, circulation with a cardiac output of 4-6 l/min is available again and the patient is transported to the hospital. There, coronary angiography is usually performed (especially if CHD is suspected) immediately, unless another clear cause (such as pulmonary embolism) for cardiac arrest is found. Hypothermia can be started immediately after connection to the ECMO system. ECMO also increases coronary perfusion. However, in the case of hypoxemic resuscitation (e.g. non-observed cardiac arrest with a correspondingly unclear duration of hypoxia), the use of ECMO is certainly questionable: It can usually restore circulation, but ultimately the whole thing usually ends in a pronounced brain damage. In this context, attention should also be paid to harlequin syndrome (harlequin: stage character of the fool; syn.: watershed phenomenon, differential hypoxia phenomenon; "blue head & red legs", "north-south" syndrome): This syndrome occurs when a va-ECMO has been implemented in the context of cardiac arrest and suddenly ROSC (return of spontaneous circulation) occurs with the patient's own cardiac actions restarting: In this case there is a competing blood flow from the retrograde flow of va-ECMO and the antegrade flow of the patient's own heart. A watershed then usually is formed in the area of the distal aortic arch. The result is that the legs are well perfused with blood ("red legs"), but the coronaries and the head ("blue head") are not. Myocardial ischemia and hypoxemic brain damage may occur.

339

Fig. 551 out-of-hospital implantation (in the emergency vehicle) of a va-ECMO (here Cardiohelp [Maquet]; cannulation of the femoral artery and vein on the right) during resuscitation of a 42-year-old man. With ECMO a sufficient circulation could be established despite patient's cardiac arrest. Coronary angiography showed proximal LAD occlusion. ROSC occurred a few minutes after recanalization. The patient survived without any neurological damage.

If asystole persists while va-ECMO is running, the blood in the left ventricle completely stops moving. This may lead to ballooning (possibly myocardial ischemia) and to a reversal flow into the pulmonary tract with consecutive pulmonary edema. Furthermore, thrombosis of the left ventricle and the ascending aorta can occur. Therefore, cardiocompression (press 5 times) should be performed every five minutes to relieve the left ventricle and to generate blood flow in the left ventricle and the ascending aorta to prevent thrombus formation. It is also suitable to insert a temporary pacemaker at an early stage if the asystole persists.

In the consensus paper 2018 "Recommendations for extracorporeal cardiopulmonary resuscitation (eCPR)" from various German societies (German Society for Internal Intensive Care Medicine and Emergency Medicine [DGIIN], German Society of Cardiology [DGK], German Society for Thoracic, Cardiac and Vascular Surgery [DGTHG], German Society for Cardiac Technique [DGfK], German Society of Anaesthesiology and Intensive Care Medicine [DGAI], German Interdisciplinary Association for Intensive Care and Emergency medicine [DIVI] and German Resuscitation Council [GRC]) pro and contra criteria were defined for the use of eCPR (va-ECMO implantation during resuscitation) that are shown (slightly modified) in the infobox. These criteria should help to decide whether va-ECMO should be installed or not in the emergency room (in-hospital) of a corresponding center if a patient with OHCA (out-of-hospital cardiac arrest) is delivered into the emergency room with ongoing CPR. The criteria can also be applied analogously for an IHCA (in-hospital cardiac arrest). If you decide to install va-ECMO (eCPR) during resuscitation, this should be performed within 60 minutes after the onset of cardiac arrest (collapse). The corresponding centers should offer eCPR standby completely (i.e. 24 hours / 7 days / 365 days).

There should also be the option of an advanced therapy (e.g. implantation of an LVAD system) in this hospital.

ACUTE CORONARY SYNDROME

Classification

According to a proposal by the European Society of Cardiology (ESC) and the American College of Cardiology (ACC), acute coronary syndrome has been divided into the following 3 groups since 2000:

- STEMI (ST elevation myocardial infarction): with ST elevations (exact: persistent, i.e. > 20 minutes)
- NSTEMI (Non-ST elevation myocardial infarction): without (persistent) ST elevation, but positive troponin
- unstable angina pectoris: by definition troponin negative (twice); definition unstable angina pectoris:
 - first event (de novo angina)
 - symptoms at rest
 - increase in duration, intensity or frequency

To simplify matters, the division can also be made into:

- STE-ACS (acute coronary syndrome with ST elevation myocardial infarction)
- NSTE-ACS (acute coronary syndrome without ST elevation myocardial infarction)

The earlier division into Q wave and non-Q wave infarcts is obsolete since Q waves only develop after about 12 hours and can occur in both STEMI and NSTEMI.

As a counterpart to acute coronary syndrome, there is now also the term chronic coronary syndrome (i.a. ESC Guidelines for the diagnosis and management of chronic coronary syndromes 2019) instead of the term stable coronary heart disease (CHD).

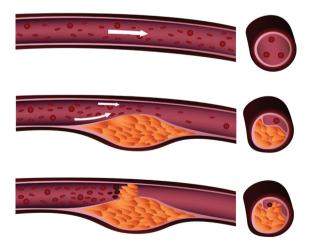


Fig. 570 Pathophysiology of acute myocardial infarction: Plaque rupture and consecutive thrombotic occlusion of the coronary vessel occur.

Epidemiology

Coronary heart disease (CHD) is the leading cause of death in industrialized nations (like Germany) before malignancies (No.2) and stroke (No.3) and is responsible for 13% of all deaths. Approximately 300 infarcts / 100,000 inhabitants occur per year in Germany with about 140.000 deaths annually. Myocardial infarctions occur more frequently in the fifth to sixth decade of life. Myocardial infarction is the most frequent cause of cardiac arrest and thus the most frequent reason for resuscitation. The probability of suffering a myocardial infarction in the course of life (lifetime prevalence) is 30% for men and 15% for women. At an age below 75 years, men predominate, at an age above 75 years, women predominate (each in a ratio of 2:1). The mortality rate of myocardial infarction is still 16% despite all the progress made. If evaluations of death certificates with a suspected myocardial infarction are also included in the statistics, the mortality rate is even 50%. Most deaths occur prehospital. More women (52%) die of mvocardial infarctions than men (48%). The mortality rate in women is almost twice as high as in men ("Eva infarction"), partly due to the frequently atypical symptoms (often only nausea, upper abdominal pain, dyspnea) and the associated delayed diagnosis. The early mortality in NSTEMI is ten times lower than in STEMI, but the cumulative mortality after one and two years is just as high as in STEMI. After four years, the mortality in NSTEMI is even twice as high as in STEMI (mainly due to the higher age and higher rate of comorbidities). In an observation study (Yeh et al, N Engl J 2010) on 46,086 North American patients, both the myocardial infarction rate and myocardial infarction mortality decreased by 24% during the observation period from 1999 to 2008. The incidences were 70/100.000 for STEMI and 132/100.000 for NSTEMI.

ACS is the second most frequent emergency for the EMS (emergency medical service) with a fraction of approximately 20% (after the seizure). 30% of all patients presenting with chest pain in the emergency room have an acute coronary syndrome.

The average prehospital time in Germany is 225 minutes (GOAL registry) and has even increased over the last 10 years (1995: 160 minutes) despite all efforts to educate and inform the people. The main loss of time is due to the extended time between the onset of symptoms and the patient's emergency call. 40% of all infarctions occur in the early morning hours (12 PM-6 o'clock AM; due to the sympathicoadrenergic activation). In 30% an acute myocardial infarction occurs in previously asymptomatic patients (in the sense of a first manifestation of CHD). Unfortunately, it is still the case in Germany that despite all the discussion about the superiority of thrombolysis or PCI, 40% of all STEMI patients do not receive any reperfusion therapy at all. According to data from the German Myocardial infarction Registry 2013, however, the proportion has decreased to 10%

Epidemiology: STEMI (1/3) ↓ NSTEMI (2/3) ↑

- causes:
 - ventricular filling too low (preload too low; Impella depends on preload) \rightarrow fluid administration (The pump sucks relatively often on the wall, so that fluid should be administered generously, provided that the gas exchange allows it!)
 - incorrect position → repositioning (under echocardiographic control)
 - right ventricle failure
- consequences:
 - The Impella flow is less than expected. There is an average expected flow rate for the respective Impella version for each performance level which can be found in the corresponding tables of the company.
 - only insufficient circulatory support
 - hemolysis
- heparin perfusor (UFH) according to target-ACT 160-180 seconds or target-PTT 50-70 seconds (if HIT II: argatroban systemically [but not locally in the purge solution; here then only glucose without heparin])

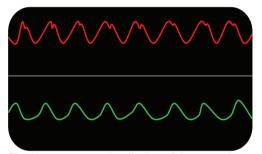


Fig. 645 curves on the display of the control console monitor: above (red) the placement signal, below (green) the motor current curve. The placement signal is configured correctly to be pulsatile and aortic, i.e. the diastolic pressure is significantly greater than zero. The position of the pump is correct. The motor current curve is also normally pulsatile.



Fig. 646 The motor current curve (green) is flat, i.e. both openings (inlet and outlet) are in the same area. The placement signal (red) is configured aortically, i.e. both openings are in the aorta. The pump has slipped out of the left ventricle (most common cause: Valve was not screwed and shut.) and must be pushed forward. Procedure: reduction of performance level to p2, increase in catecholamines, then repositioning under echocardiographic control

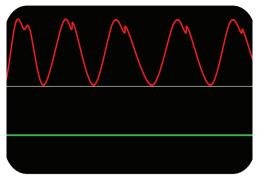


Fig. 647 The motor current curve (green) is flat, i.e. both openings (inlet and outlet) are in the same area. The placement signal (red) is configured ventricularly (diastolic blood pressure to zero), i.e. both openings are in the left ventricle. The pump has slipped too far into the left ventricle and must be withdrawn. Procedure: reduction of performance level to p2, increase in catecholamines, then repositioning under echocardiographic control

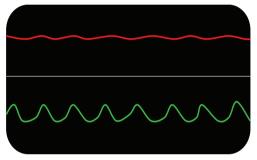
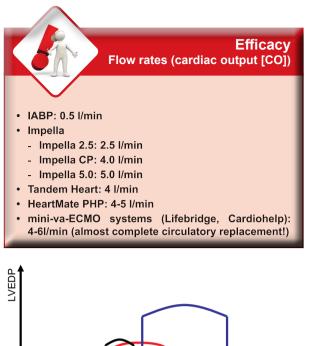
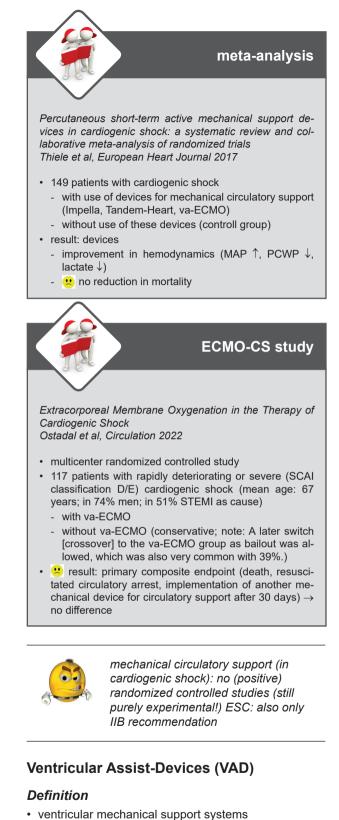



Fig. 648 The motor current curve (green) is normally pulsatile, but the placement signal (red) is flat. This is because the ejection fraction of the left ventricle is severely reduced. The lower the ejection fraction, the lower the pulsatility. Most of the work here is done by the pump which is also correct because the left ventricle should be relieved.



LVEDV

Fig. 657 Various working diagrams of the left ventricle (syn.: pressure-volume relationships; for basic principles see page 215) are shown. The area under the curve corresponds to the stroke work (syn.: pressure-volume work). The higher the stroke work, the higher the afterload and therefore the total oxygen turnover. It can be seen that the stroke work under Impella (black) is significantly lower than without any mechanical support (red). With ECMO (blue; veno-arterial: e.g. Lifebridge, Cardiohelp) the stroke work is even increased (due to the retrograde flow in the aorta)! The afterload for the left ventricle is reduced by Impella and increased by va-ECMO. For this reason, va-ECMO is often used in combination with the Impella (va-ECMO + Impella = ECmella).

va-ECMO increases the left ventricular afterload which is disadvantageous in cardiogenic shock!

- surgical (cardiothoracic) implantation mostly via a combination of partial hemisternotomy (in the upper region) and an anterolateral mini-thoracotomy
- Due to the declining number of heart transplants, more and more VADs are being implanted (e.g. 350 in Germany in 2021). Gold standard, however, is the heart

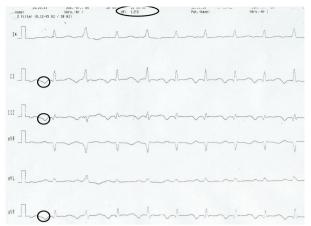


Fig. 697 PJRT (permanent junctional reciprocating tachycardia): The relatively (for a tachycardia) slow heart rate, the negative P waves in II, III and aVF as well as the retrograde P wave (behind the QRS complex) are conspicuous.

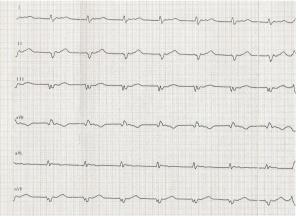
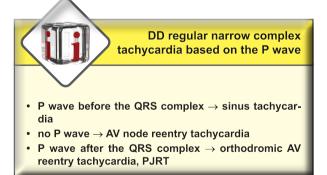
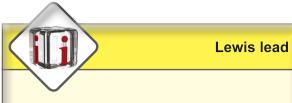
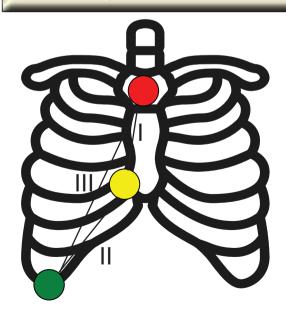




Fig. 698 PJRT (permanent junctional reciprocating tachycardia): retrograde P waves which are negative in II, III, aVF at (for tachycardia) relatively slow heart rate of only 112/min



The best way to assess atrial actions is to use the Lewis lead!

definition:

- a modified 12-lead ECG derivation with which one can better assess the atrial excitation (atrial actions; P wave discrimination)
- named after the British cardiologist Thomas Lewis (1881-1945; originally developed to better detect atrial fibrillation waves)
- procedure (goes very quickly!): You apply a normal 12-lead ECG (note: also possible with the monitor ECG). The chest leads remain unchanged. The limb leads are changed at 3 of 4 positions:
 - electrode right arm (red) \rightarrow to the manubrium of the sternum
 - electrode left arm (yellow) \rightarrow to the right of the lower egde of the sternum (5th ICS parasternal right)
 - electrode left leg (green) \rightarrow to the lower right costal arch
 - electrode right leg (black; "mass") \rightarrow remains
- interpretation: The lead I is called Lewis lead. It runs exactly through the atrium. This is the best lead to identify and assess atrial actions because this lead is parallel to the atrial vector. However, it is perpendicular to the ventricular vector so that the atrial actions can be assessed better, the ventricular actions, however, can be assessed worse.
- indication:
 - unclear basic rhythm (possibly P waves recognizable in the Lewis lead?)
 - unclear regular tachycardia
 - unclear regular narrow complex tachycardia (possibly flutter waves recognizable in the Lewis lead?)
 - unclear regular wide complex tachycardia (differential diagnosis VT / SVT: possibly AV dissociation as evidence of VT recognizable in the Lewis lead?)

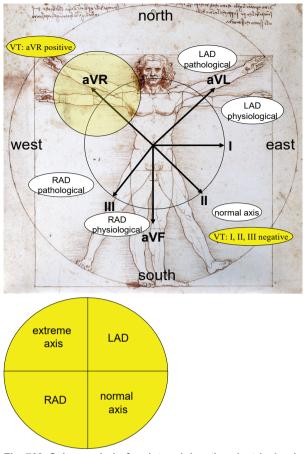


Fig. 709 Cabrera circle for determining the electrical axis (location type) using the limb leads (LAD: left axis deviation; RAD: right axis deviation): In ventricular tachycardia you often find an extreme axis and especially often a completely different axis as in the tachycardia-free ECG. The vector points to an area where the axis is normally never found ("no man's land"; yellow circle). If you compare the Cabrera circle with a compass, the axis of a VT is often located in the north-west. In case of VT aVR is often positive and I, II and III negative. By the way, the distinction between indifference and steep type, which is often difficult in everyday clinical practice, should be noted: In indifference type there is I > III and aVL positive, in the steep type there is III > I and aVL negative. With an S in I and a Q in III you have a SI-QIII type: Here the T wave must also be negative (inverted) in III by definition. If I, II and III show both an S and R, the heart axis cannot be determined in the frontal plane. Here it runs like an arrow (Latin: "sagitta") vertically through the frontal plane (through the Cabrera circle towards the eyes of the observer): Then it is a sagittal type.

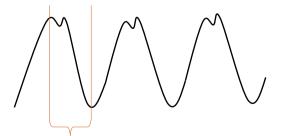


Fig. 710 Brugada's sign is defined as an RS distance of > 70 ms. It indicates ventricular tachycardia in the presence of a wide QRS complex tachycardia.

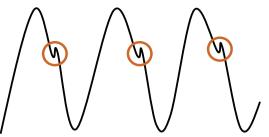
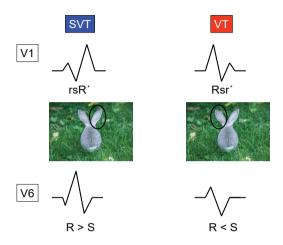
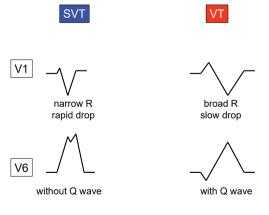




Fig. 711 Josephson's sign is defined as a notch in the descending part of the S wave of the QRS complex. It indicates ventricular tachycardia in the presence of a wide QRS complex tachycardia.

right bundle branch block

Fig. 712 Wide QRS complex tachycardia with right bundle branch block (RBBB): The chest wall leads V1 and V6 are considered. A rsR´ configuration in V1 (right rabbit ear, i.e. the second spike is higher than the first spike [typical RBBB]) indicates SVT, a Rsr´ configuration (left rabbit ear, i.e. the first spike is higher than the second spike [atypical RBBB]) indicates VT. If the R wave in V6 is higher than the S wave, it speaks of SVT. If the R wave is smaller than the S wave, this speaks of VT.

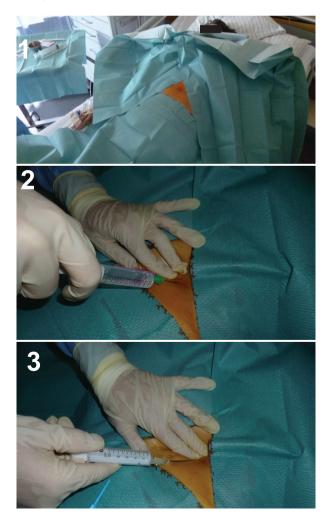
left bundle branch block

Fig. 713 Wide QRS complex tachycardia with left bundle branch block (LBBB): The chest wall leads V1 and V6 are considered. A narrow R wave with a rapid drop from RS in V1 indicates SVT, a wide R wave with a slow drop in RS indicates VT. If there is a Q wave in V6, this speaks of VT. If this is not the case, this speaks of SVT. treated surgically.

- if necessary intrapericardial lysis (e.g. alteplase 10 mg) in case of septation or purulent / tuberculous pericarditis
- unclear recurrent pericardial effusion \rightarrow possibly pericardioscopy (possibly with biopsy)
- malignant pericardial effusion:
 - pericardiodesis (e.g. 30 mg bleomycin in 50 ml normal saline i.p. [intrapericardial]; note: The ESC guidelines 2015 recommend cisplatin for lung cancer and thiotepa for breast cancer.)
 - oncological therapy (i.a. systemic chemotherapy, radiotherapy [especially for lymphomas and leukemias])
 - possibly pericardial fenestration (A window is created into the pericardium so that the pericardial effusion drains into the pleural space, where there is considerably more space than in the pericardial sac.)
 - interventional (percutaneous balloon pericardiotomy: via wire under X-ray fluoroscopy expanding the puncture site in the pericardium using a balloon [e.g. valvuloplasty balloon])
 - surgical (cardiothoracic; via a left-sided mini-thoracotomy)
 - possibly pericardectomy (ultima ratio; but usually no more operable)
- special cases:
 - autoimmune: triamcinolone 300-600 mg/m² i.p.
 - purulent: gentamycin 80 mg i.p. (via irrigation drainage)

Pericardiocentesis (pericardial puncture)

Puncture sites

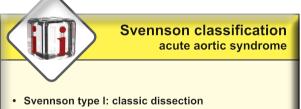

- subcostal:
 - 2-3 cm left and 2-3 cm below the xiphoid (Larrey point)
 - direction of puncture: left shoulder (tip: flat direction [almost parallel to the sternum!])
 - standard
- · apical:
 - apex in MCL
 - direction of puncture: right shoulder
 - intercostal (upper edge of the rib)
 - especially in obese patients

Procedure

- flat position of the upper body
- analgosedation (e.g. fentanyl 0.05 mg, propofol 50-100 mg)
- best invasive blood pressure measurement (insert arterial line before if possible; but not absolutely necessary)
- · sterile gown, sterile gloves, mouth protection, hood
- sterile covering, disinfection
- local anesthesia
- insertion of the wire via Seldinger technique, dilator, insertion of a 5 F-sheath
- · via the sheath insertion of a pigtail up to the left apex

of the heart

- control
 - fluoroscopy (only very rarely necessary)
 - echocardiography (with sterile cover)
- connection to drainage system (tip: Redon drainage with suction)
- If a turbid pericardial effusion appears, the pigtail drainage should not be removed for the time being. If further examination of the aspirate reveals signs (e.g. detection of neutrophilic granulocytes or bacteria) of a purulent pericardial effusion, then an antibiotic (e.g. gentamicin) can be applied locally via the drainage and the pericardial space can also be rinsed with sodium chloride. However, if the drainage has been removed beforehand, then the pericardial puncture and thus the re-insertion of the drainage is as good as impossible, since there is (almost) no pericardial effusion left.
- note: If you don't have all the material available (e.g. out-of-hospital as an emergency physician), you can quickly use a CVC (central venous catheter) set: After puncturing with the Seldinger needle and advancing the Seldinger wire. The needle is removed and the CVC is advanced over wire after dilatation. Then the wire is removed. All the lumina of the catheter are closed except for one (preferably one-lumen CVC), through which the effusion is then drawn off with a syringe.



ACUTE AORTIC SYNDROME

Definition

- acute chest pain (the 3 most important differential diagnoses):
 - acute coronary syndrome (ACS)
 - acute pulmonary embolism (APE)
 - Acute aortic syndrome (AAS)
- · classification according to Svennson
- guidelines: ESC guidelines on the diagnosis and treatment of aortic diseases 2014

- Svennson type II: intramural hematoma (IMH)
- Svennson type III: local dissection
- Svennson type IV: penetrating aortic ulcer (PAU)
- Svennson type V: traumatic or iatrogenic dissection

Acute aortic dissection (Svennson type I)

Definition

- rear of the intima layer of the aortic wall with dissection
 structure of the aortic wall:
- structure of the aortic wall.
 - intima (endothelium, basal membrane, connective tissue)
 - media (elastic fibres, musculature)
- adventitia: connective tissue, vessels, nerves
- mostly hypertensive blood pressure (hypertensive emergency)
- Contrary to frequent opinion, the aorta in aortic dissection is not dilated previously (in 80%), i.e. there is no pre-existing aortic aneurysm.



Fig. 909 aortic dissection: schematic illustration of the intimal tear

Pathophysiology

- tear (entry) in the intima layer of the aortic wall (in 90% ventral)
- Most dissections (65%) have their origin in the proximal ascending aorta immediately after the aortic valve (mostly in the area of the ostium of the RCA) because this is where the load on the aortic wall is greatest due to the flow properties.
- intramural bleeding into the aortic wall (bleeding inside the media)
- splitting into an inner and outer layer of the aortic wall (dissection)
- The blood flow opens up a new path, a false lumen develops.
- spread of the dissection:
 - antegrade (towards distal; mostly)
 - retrograde (towards proximal; rarely)
- · mostly second tear (reentry)

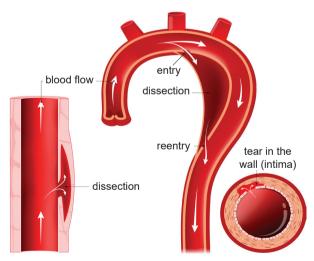


Fig. 910 aortic dissection: schematic illustration of the pathophysiology

in three weeks. If a patient in intensive care has a paO₂ of 49 mmHg in the BGA, it is not uncommon for panic to break out (not that code blue alarm is almost triggered) and mechanical ventilation is forced to such an extent that VALI is unfortunately often generated. The Italian anesthetist Antonio Pesenti described mechanical ventilation as "a life saving procedure that can kill the lung". Actually one should prohibit BGAs in the ARDS (exaggeratedly formulated)! The most important thing about mechanical ventilation in ARDS is the motto: "Keep cool man!"

Fig. 977 To ventilate a damaged lung is similar to running a 400 meter dash with a broken leg: You only have to go around the stadium round once here. So you have to do it slowly and don't want to set a world record with a super time, otherwise everything will break completely and you won't get 5 feet!

 $SpO_2 > 90\%$, $paO_2 > 60$ mmHg and $paCO_2 < 70$ mmHg completely sufficient! Most important: no damage to the lungs due to forced mechanical ventilation!

no BGA cosmetics in ARDS! no atmo-centric therapy (not the BGA values are in the foreground, paO₂ is not the target parameter)! improvement of oxygenation ≠ improvement of survival!

Patients in ARDS rarely die of hypoxemia, but unfortunately often of the consequences of VALI!

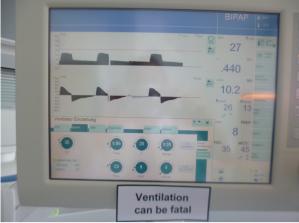


Fig. 978 The warning "Ventilation can be fatal" should be affixed to the ventilators in the intensive care unit (especially with ARDS) in analogy to to the inscription on the cigarette packs!

- I:E 1:1
- set FiO₂ according to SpO₂ (target: SpO₂ > 90%)
- pressure controlled ventilation
- low tidal volume (V₇ 6ml/kg PBW) \rightarrow set low pressure difference Δp = IPAP PEEP (target: pressure difference Δp < 15 mbar)
 - low inspiratory pressure (IPAP < 30-35 mbar; tip: set PEEP first, then inspiratory pressure [may be a maximum of 15 mbar higher than PEEP; orientate on the V_T])
 - high PEEP (10-20 mbar)
 - ARDS network table (orient on the set FiO₂)
 - but then reduction in case of improved oxygenation, no permanent lingering at high PEEP levels)
- high respiratory rate (RR 20-30/min)

Recruitment maneuver

Definition

- maneuver to re-open closed (atelectatic) lung areas that are no longer participating in the gas exchange
- The clinically most common recruitment maneuver is (better: was) the Lachmann maneuver.
- effective especially in the early phase of an extrapulmonary ARDS

Types

- intermittent sighs (type of mechanical ventilation in which several intermittent breaths with high inspiratory pressure and PEEP are applied at a set frequency per hour, resulting in hyperinflation of the lung and recruitment of atelectatic areas)
- airway pressure release ventilation (APRV):
 - spontaneous breathing with high CPAP level (20-30

vv-ECMO: for **lung** replacement (respiratory failure [hypoxemic or hypercapnic]) va-ECMO: for **heart** replacement (circulatory failure [especially cardiogenic shock, cardiac arrest])

Types

- according to location (exactly: according to the type of vessel into which the blood is returned)
 - veno-venous (vv-ECMO)
 - veno-arterial (va-ECMO)
- according to invasiveness (technique)
 - interventional (percutaneous)
 - surgical (open)

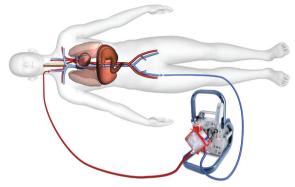


Fig. 985 ECMO veno-venous (vv-ECMO [23])

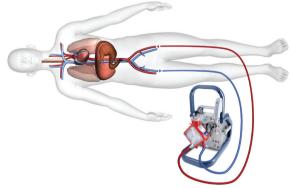


Fig. 986 ECMO veno-arterial (va-ECMO [23])

vv-ECMO

- · used more often than va-ECMO
- sites: The blood is usually withdrawn from the femoral vein (21-23 F) and returned to the internal jugular vein (15-19 F). The blood should always be withdrawn inferior and returned superior since the saturation in the inferior caval vein is lower (in critically ill patients) than in the superior caval vein and therefore the ECMO is much more effective!
- femoro-jugular cannulation: withdrawal of blood from the area of the inferior caval vein (mostly right femoral vein; long [38 cm] cannula [drainage cannula]) and

return into the area of the superior caval vein (mostly right internal jugular vein; short [15-23 cm] cannula [reperfusion cannula])

- technical: series connection
- for lung replacement (pulmonary support ["pulmonary" ECMO]; in acute lung failure [ARDS]; mechanical ventilation is continued, but the invasiveness of mechanical ventilation can be significantly reduced then in the sense of [very] lung-protective ventilation; settings / goals: FiO₂ < 0.6, inspiratory pressure < 28 cmH₂O, PEEP mostly unchanged, tidal volume < 4 ml/kg, respiratory rate 12/min, I:E 2:1)
- · classification according to blood flow:
 - < 2.5 l/min: low-flow vv-ECMO (especially for hypercapnic respiratory failure [e.g. AECOPD and NIV failure]; good for decarboxylation; for low-flow ECMO see also page 767)
 - > 2.5 l/min: high-flow vv-ECMO (especially for hypoxemic respiratory failure [especially ARDS])
- procedure:
 - low-low (blood flow < 2.5 l/min: If only decarboxylation (e.g. AECOPD) is required, lower blood flows are sufficient. A relevant decarboxylation is already possible from a blood flow of approximately 800 ml/min. Intubation can already be avoided from a blood flow of 1 l/min. This is because carbon dioxide is much more water soluble than oxygen. A double lumen cannula (requiring only a venous puncture) is sufficient then. With a double lumen cannula a maximum blood flow of about 1.5 l/min is possible.
 - high-flow (blood flow > 2.5 l/min): If, on the other hand, oxygenation (e.g. severe ARDS) is required, higher blood flows are necessary. Sufficient oxygenation only begins at a blood flow of approximately 3 l/min. A double lumen cannula is no longer sufficient for this: Two cannulas have to be placed here (e.g. drainage via femoral vein and return via internal jugular vein).
- control:
 - oxygenation: It is controlled via the blood flow. This is set by means of the rotary wheel (rotational speed: number of revolutions of the centrifugal pump per minute [rpm]) on the control panel.
 - decarboxylation:
 - It is controlled both via the blood flow (however, the maximum of decarboxylation is reached at 2 l/ min) and via the gas flow, i.e. via the oxygen supply (dry oxygen [100% and not just 21%; oxygen and not compressed air]) of the wall connection.
 - The oxygen hose is plugged into the oxygen connection of the membrane. This presses the carbon dioxide out of the capillaries of the membrane (sweep gas, purge gas).
 - By default, one starts with a gas flow of 1 l/min: Then after approximately 20 minutes, a BGA is taken and the respiratory minute volume at the respirator is accordingly reduced stepwise by 10% (respiratory rate and tidal volume [by reduction of the pressure difference between inspiratory pressure and PEEP). This is then repeated every 20 minutes. In small steps, the gas flow can be increased

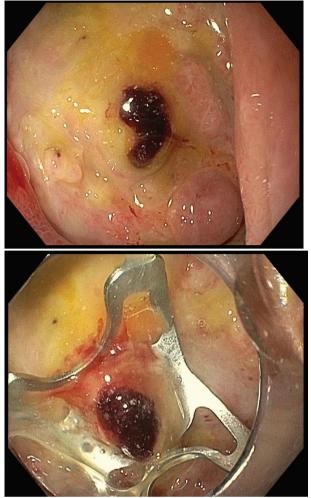


Fig. 1132 large callous duodenal ulcer with a vascular stump that was treated with an OTS clip

Fig. 1133 OTS clip for closing an anastomotic leak after excision of a gastric ulcer

Powder

- Hemospray (Cook Medical company)
- EndoClot PHS (Polysaccharide Hemostase System; MikroTech company)
- ABS (Ankaferd Blood Stopper; Turkish mixture of plant components with coagulating properties)

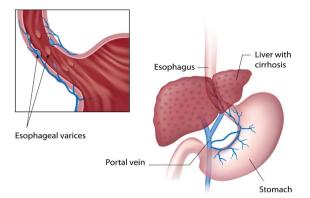
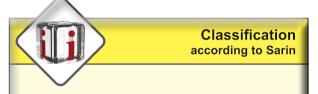
• PuraStat (a gel of synthetic peptides that is applied for hemostasis; Nicolai company)

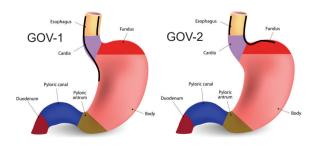
Fig. 1134 PuraStat: The gel is applied to the bleeding area using a special catheter (without a needle).

Hemospray (TC-325)

- definition: inorganic powder (nanopowder) with coagulating features
- set: a gun consisting of
 - powder (content: 20 g)
 - CO₂ cartridge
 - catheter:
 - $\,\circ\,$ sizes: 10 F (for the therapeutic device) or 7 F
 - The catheter is inserted via the working channel of the endoscope and the powder is then applied over a large area to the bleeding lesion.
- indications: especially
 - \Lambda tumor bleeding (main indication)
 - ulcer bleeding
 - bleeding after endoscopic interventions (e.g. biopsy, polypectomy, EMR [endoscopic mucosal resection], ESD [endoscopic submucosal dissection])
 - also suitable for arterial bleeding (i.e. Forrest la bleeding), but not for variceal bleeding
- costs (disposable set): 380 €
- studies:
 - meta-analysis Aziz et al, Ann Gastroenterolog 2020: equally effective as other primary hemostasis measures, but with a high rebleeding rate (35%)!
 - In a multicenter, randomized-controlled, non-inferiority study (Lau et al, Ann Intern Med 2022), it was found to be as effective as standard therapy in upper non-variceal gastrointestinal bleeding.
- S2k guideline of the DGVS (addendum 12/2021): can be used as an endoscopic first-line procedure for non-variceal upper gastrointestinal bleeding

Fig. 1135 Hemospray (Cook Medical): a gun consisting of the powder, a CO, cartridge and the application catheter


Fig. 1138 As a result of liver cirrhosis, the blood from the portal vein can no longer flow into the liver. The congestion leads to portal hypertension. Bypassing circuits (portocaval anastomoses) are formed (to the superior caval vein: especially via the gastric veins \rightarrow esophageal veins; to the superior and inferior caval vein: i.a. via the umbilical veins; to the inferior caval vein: via the inferior mesenteric vein \rightarrow rectal veins).

Types

- esophageal varices (90%)
- gastric varices (9%; especially fundal varices; classification according to Sarin → see infobox)
- duodenal varices (1%)

- gastroesophageal varices (GOV)
 - GOV-1 (74%): esophageal varices that extend over the cardia into the corpus of the stomach (on the minor side, i.e. small curvature) \rightarrow lower risk of bleeding
 - GOV-2 (16%): esophageal varices that extend over the cardia into the fundus of the stomach (possibly also into the corpus [on the major side, i.e. large curvature]) → higher risk of bleeding
- isolated gastric varices (IGV)
 - IGV-1 (8%): varices in the fundus (highest risk of bleeding among all gastric varices)
 - IGV-2 (2%): varices in all other parts of the stomach

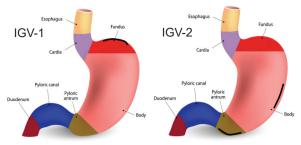


Fig. 1139 Sarin classification of gastric varices

Symptoms

- hematemesis
- tarry stool
- dizziness
- hypovolemic shock
- · disturbance of consciousness; reasons:
 - reduced cerebral perfusion as a result of hypovolemic shock
 - hepatic encephalopathy (1000 ml blood contains 200 g protein $\rightarrow NH_3^{\uparrow}$)

Predictors (variceal GI bleeding)

- liver disease (previously known)
- thrombocytopenia (platelets < 88,000/µl)
- splenomegaly
- The lower the platelet count and the larger the spleen, the higher the probability of variceal bleeding: ⚠ ratio of platelet counts per µl to size of the spleen (longitudinal diameter) in mm < 909 → varicose bleeding (Colli et al, Cochrane Database Syst Rev 2017)!

Upper GI bleeding in liver cirrhosis

- variceal (50%)
- non-variceal (50%)
 - erosive gastritis
 - ulcer
 - reflux esophagitis
 - Mallory-Weiss syndrome
 - PHG (portal hypertensive gastropathy)
 - PHG can also bleed (mostly chronic blood loss, less acute bleeding)! Detection of portal hypertensive gastropathy is an indication for a non-selective β-blocker!
 - frequent cause for inappetence and thus cachexia in cirrhotic patients
 - GAVE (gastric antral vasal ectasia)
 - "watermelon stomach"
 - · ectasias of the vessels, especially in the antrum
 - frequent occurrence in:
 - liver cirrhosis
 - scleroderma (systemic sclerosis)
 - frequent cause of chronic blood loss (iron deficiency anemia)
 - therapy: APC (argon plasma coagulation; settings: mode pulsed-APC, power 20 Watt)

de, hydrochlorothiazide), steroids, aminosalycilates (e.g. mesalazine, sulfasalazine), metronidazole, cotrimoxazole, erythromycin, pentamidine, valproic acid (incidence 1: 40,000; mortality 20%), lamivudine, INH (isoniazid), ACE inhibitors, β -blockers, statins, diclofenac, acetaminophen (paracetamol), opiates, gliptins (e.g. saxagliptin), DPP-4 inhibitors, GLP-1 analogues, oral contraceptives, hormone replacement therapy (Oskarsson et al, CMAI 2014), thyreostatics (carbimazole, thiamazole), cimetidine, asparaginase, cisplatin

- · postinterventional:
 - after ERCP: post-ERCP pancreatitis (PEP; in 5%)
 - after oral double balloon enteroscopy (in 0.34%)
 - after pancreatic puncture (EUS; in 1%)
- posttraumatic (e.g. horse kick, traffic accident, falling on a bicycle handlebar), postoperative (e.g. injury to the tail of the pancreas during a transperitoneal nephrectomy)
- pronounced hypertriglyceridemia (triglycerides > 1,000 mg/dl)
 - Pedersen et al, JAMA Intern Med 2016: The risk of pancreatitis is increased from triglyceride values > 2 mmol/l (178 mg/dl). For every 1 mmol/l (89 mg/ dl) increase in triglycerides, the [relative] risk of pancreatitis increases by 17%.
 - Hansen et al, Clin Gastroenterol Hepatol 2020: triglyceride levels > 200 mg/dl → 3-fold increased risk of pancreatitis
 - Pothoulakis et al, Digestion 2021: 2.5 times more frequently severe course and 3 times higher mortality
- hypercalcemia (primary hyperparathyroidism [often no hypercalcemia due to released fatty acids with saponification!])
- · pancreas divisum (see infobox), annular pancreas
- sphincter Oddi dysfunction (SOD; see infobox)
- · duodenal diverticulum (juxtapapillary diverticulum)
- · penetrating gastric ulcer / duodenal ulcer
- IPMN (intraductal papillary-mucinous neoplasia; obstruction of the pancreatic duct by mucin; typically cysts in the pancreas in the imaging)
 - main-duct type: MD-IPMN (75%)
 - branch-duct type: BD-IPMN (25%)
- viruses (mumps [often harmless accompanying pancreatitis; classically increased amylase here]; coxsackie, HIV, CMV, HSV, VZV, hepatitis viruses [especially hepatitis E virus])
- bacteria (especially mycoplasma [e.g. mycoplasma pneumoniae], mycobacteria [e.g. mycobacterium tuberculosis], leptospira, yersenia, campylobacter)
- · ascariasis (roundworms) in the bile ducts
- tumor (e.g. first manifestation of pancreatic cancer [1.5%])
- autoimmune (autoimmune pancreatitis [AIP])
- 5% of all chronic pancreatitis
- m:w = 2:1; age mostly > 50 years
- types:
 - AIP type I (LPSP: lymphoplasmacellular sclerosing pancreatitis)

- AIP type II (IDCP: idiopathic ductocentric pancreatitis)
- often associated with other autoimmune diseases (e.g. IgG4-associated cholangitis, Sjoegren's syndrome, SLE, vasculitis, Ormond's disease [retroperitoneal fibrosis], inflammatory bowel disease)
- symptoms: painless jaundice, recurrent acute pancreatitis, weight loss, new onet of diabetes mellitus
- often focal ("pseudotumor"; easily confused with pancreatic carcinoma in the imaging!)
- IgG subtype 4 ↑ (only for type I)
- very good response to steroids (drug of choice for maintenance therapy: azathioprine)
- note: also possible with immune checkpoint inhibitors (especially CTLA-4 inhibitors)
- hereditary:
 - α1-antitrypsin deficiency (syn.: Laurell-Eriksson syndrome)
 - mutations (Genetic testing should be carried out primarily in younger patients with unexplained recurrent pancreatitis.):
 - PRSS1 gene (protease serine 1; syn.: cationic trypsinogen)
 - SPINK1 gene (serine protease inhibitor Kazal type 1)
 - CPA1 gene (carboxypeptidase A1)
- idiopathic (15%)

The most common causes of pancreatitis are gallstones and alcohol !

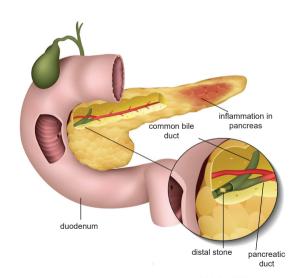


Fig. 1194 The most common cause of pancreatitis is a prepapillary impacted gall stone (biliary pancreatitis): This does not only result in a congestion of the common bile duct (CBD), but also of the pancreatic duct (syn.: duct of Wirsung): The increased pressure leads to a premature activation of the digestive enzymes.

- mortality
 - paracetamol intoxication: 0.43%
 - paracetamol-induced acute liver failure: 32%
- If there is no acute liver failure in the course of paracetamol poisoning which is mostly the case, the liver recovers completely: There is no chronic permanent liver damage due to paracetamol intoxication.

Death cap poisoning

Definition

- syn.:
 - phalloides syndrome
 - amanita syndrome
- especially in late summer, autumn (July-October)
- death cap mushroom (amanita phalloides):
- typically tuber on the stem, white lamella
- types:
 - green (amanita phalloides; frequent; especially in deciduous forests)
 - white (amanita virosa; rare, especially in coniferous forests; mostly confused with the harmless forest or meadow mushroom [most important distinguishing feature: The lamellae of these mushrooms are always colored, those of death cap mushrooms are always white!])
- A by far the most frequent lethal mushroom poisoning (1 mushroom sufficient already [fly agaric: approximately 10 mushroom necessary])
- sweet taste ("non-toxic")
- toxin: amanitin (amatoxin)
 - a cyclic octapeptide
 - inhibition of RNA polymerase II so that the transcription of DNA into mRNA is inhibited and thus the biosynthesis of numerous proteins (both functional proteins [such as enzymes or hormones] and structural proteins [such as membrane receptors]) is blocked
 - heat-stable (not destroyed by cooking)
 - is subject to an enterohepatic circulation
 - The toxin is not only present in the death cap mushroom (90% of which is the cause of the phalloides syndrome), but also in some galerina species (skullcaps; especially deadly skullcap [syn.: funeral bell; galerina marginata] which can be confused with the sheathed woodtuft [an edible mushroom]) and in poisonous umbrella mushrooms (numerous lepiota species) with which the parasol (an edible umbrella mushroom; see page 1617) can be confused.
- frequent occurrence of amanita poisoning also in Syrian refugees (In its homeland, there is a edible mushroom that looks deceptively similar to death cap mushroom.)
- \Lambda mortality: 25%
- typically three-phasic course
- · often a complete family affected
- history: Emperor Claudius (10 BC 54 AD) was murdered by his wife Agrippina by death cap poisoning so that her son Nero came to power.

Fig. 1305 death cap mushroom (here green death cap mushroom [amanita phalloides]): Typical feature is the tuber at the bottom of the stem.

Fig. 1306 The most frequent cause of amanita poisoning is confusion with meadow mushroom. The most important distinguishing feature are the lamellae: In the case of meadow mushroom (first picture) the gills (lamellae) are colored, in the case of death cap mushroom (second picture) they are white!

Amanitin (Amatoxin) not only found in the mushroom species amanita, but also in the mushroom species galerina and lepiota!

Phases

- gastrointestinal phase (6-12 hours after ingestion; classically only after a latency period of > 6 hours after the mushroom meal! A The latency period is absolutely pathognomonic for death cap poisoning!):
 - nausea, vomiting (often bloody), diarrhea (massive

- bioartificial procedures (cell-based; not yet commercially available, also not yet approved)
 - hepatocyte cultures
 - HepatAssist (Alliqua Inc.)
 - with porcine hepatocytes
 - Demetriou et al, Ann Surg 2004: no survival benefit
 - ELAD (extracorporeal liver assist device; Thompson et al, Hepatology 2016: no survival benefit)
 - AMC-BAL (academisch medisch centrum bioartificial liver)
 - BELS (biological extracorporeal liver support)
 - MELS (modular extracorporeal liver support; with human hepatocytes)

MARS

Definition

- MARS: molecular adsorbent recycling system
- filtration procedure for detoxification ("liver dialysis")
- · extracorporeal detoxification
- developed at the University of Rostock in Germany in 1993 by Stange
- Gambro Hospal company

Principle

- removal of water-soluble toxins (especially ammonia) via conventional dialysis membrane
- removal of albumin-bound toxins via special MARS membrane (dialysis against albumin [acts as "attractant protein"]; principle of albumin dialysis)
- subsequent recycling of albumin via carbon adsorbers and ion exchangers

Fig. 1318 normal CVVH machine (Prismaflex) on the right, MARS as additional module on the left [18]

Fig. 1319 MARS

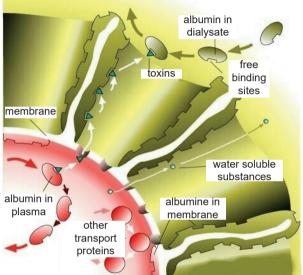


Fig. 1320 MARS membrane: Albumin is embedded in the membrane and acts as an attractant protein [18].

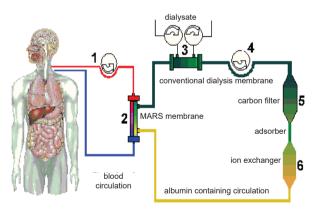


Fig. 1321 MARS flow circuit: Venous blood from the patient's Shaldon catheter is transported via a roller pump (1) to the MARS membrane (2): There detoxification of the albumin-bound toxins takes place. Then the blood flows to a conventional dialysis membrane (3): There detoxification of the water-soluble toxins takes place. Finally the "contaminated" albumin is recycled via carbon filters (5) and ion exchangers (6). [18]

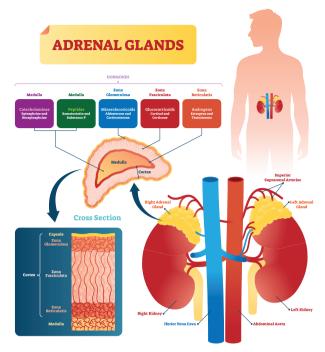
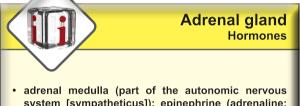



Fig. 1358 adrenal gland: structure and function

- adrenal medulla (part of the autonomic nervous system [sympatheticus]): epinephrine (adrenaline; 80%), norepinephrine (noradrenaline; 20%)
- adrenal cortex:
 - zona glomerulosa (outer layer): mineralocorticoids (aldosterone, deoxycorticosterone [DOC]); no central control of the synthesis (only peripheral: via RAAS [renin-angiotensin-aldosterone system; especially via angiotensin II]; aldosterone causes an increased reabsorption of sodium and water and an increased excretion of potassium and protons [H*] in the collecting ducts of the kidneys.)
 - zona fasciculata (middle layer): glucocorticoids: cortisol (syn.: hydrocortisone), cortisone (inactive); central control of the synthesis (hypothalamus: CRH [corticotropin-releasing hormone]; pituitary: ACTH [adrenocorticotropic hormone, adrenocorticotropin; (1) only the synthesis of the glucocorticoids in the adrenal cortex is ACTH-dependent!])
 - zona reticularis (inner layer): sex hormones (especially androgens [testosterone], but also estrogens); precursor for the sex hormones: DHEA (dehydroepiandrosterone); central control of the synthesis (hypothalamus: GNRH [gonadotropin-releasing hormone]; pituitary: gonadotropins [LH, FSH])

Etiology

- decompensation (by certain triggers) of a pre-existing chronic adrenocortical insufficiency; causes for chronic adrenocortical insufficiency:
- inflammatory (adrenalitis)
 - autoimmune (most frequent cause [80%]); also possible with immune checkpoint inhibitors (e.g. ipilimumab, nivolumab); in 40% isolated, in 60% associated with other autoimmune diseases in the context of a polyglandular autoimmune syndrome (PAS; syn.: APS [autoimmune polyendocrine syndrome]):
 - type 1 (juvenile form; Blizzard syndrome; syn.: APECED [autoimmune polyendocrinopathy candidiasis ectodermal dystrophy syndrome]): Addison disease + hypoparathyroidism + mucocutaneous candidiasis
 - Type 2 (adult form): Addison disease + diabetes mellitus type 1 + autoimmune thyroiditis (either Hashimoto's thyroiditis [= Schmidt syndrome] or Graves disease)
 - infectious (tuberculosis, AIDS, CMV, mycoses)
- neoplastic (especially metastases in the adrenal gland, e.g. bronchial carcinoma [especially small cell bronchial carcinoma], lymphoma)
- adrenocortical atrophy under prolonged steroid therapy (cause of a secondary adrenocortical insufficiency)
 - too rapid tapering
 - missing increase in stress situations: Long-term steroid therapy (e.g. polymyalgia rheumatica, Crohn's disease) leads to adrenocortical atrophy. If these patients, who have been on steroid therapy for a long time, suddenly experience an acute stress situation (e.g. surgery for perforated appendicitis with septic shock, traffic accident with polytrauma), hydrocortisone (100 mg i.v.) must always be administered!
- Waterhouse-Friderichsen syndrome
- bleeding
 - meningococcal sepsis
 - oral anticoagulants (VKA, NOAC)
- bilateral adrenal vein thrombosis (e.g. in HIT II, antiphospholipid syndrome)
- bilateral adrenalectomy
 - e.g. in renal cell carcinoma (RCC) with metastasis in the contralateral adrenal gland or with unresectable central Cushing syndrom
 - for the scheme of hormone substitution after bilateral adrenalectomy: see infobox
 - In 10% the reaction to the iatrogenic adrenal insufficiency is an aggressively and invasively growing pituitary tumor with (pronounced) ACTH production (Nelson tumor).
 - always issue an emergency card
- high-dose administration of thyroid hormones (e.g. L-thyroxine 500 µg as part of therapy of myxedema coma): The administration of thyroid hormones increases the glucocorticoid clearance and can thus trigger adrenocortical insufficiency up to Addison crisis!
- drugs: i.a.

creatine formed in the liver takes place in the muscles.) can be produced which can simulate a normal renal function. Evaluation of the renal function with cystatin C would be better here.

• If the renal function does not recover (rarely the case), although the patient is hemodynamically stable, it can be switched to intermittent hemodialysis.

Special form: SCUF (slow continuous ultrafiltration)

- only ultrafiltration (= filtration of water due to a difference in pressure) of plasma water (only drainage), no detoxification
- only indicated in individual cases (e.g. in cardiac decompensation and simultaneous anuria [cardiorenal syndrome in the context of cardiogenic shock]: Here, only the water should be removed.)

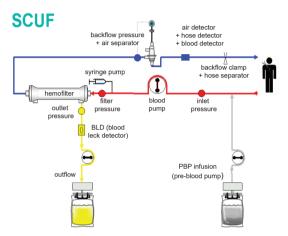


Fig. 1432 SCUF: slow continuous ultrafiltration [18]

The combination of hemodialysis and hemofiltration (CVVHDF) is most frequently used in the intensive care unit!

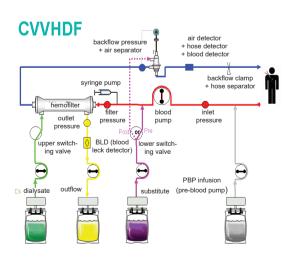


Fig. 1433 CVVHDF (hemodiafiltration) [18]

Fig. 1434 Construction: 1: drain bag, 2: citrate bag, 3 and 4: substitute bag, 5: pressure sensor, 6: pump for the blood, 7: pumps for the substitute and citrate, 8: hemofilter, 9: air bubble detector ("air trap"), 10: heating, 11: equipotential bonding, 12: operating window (touchscreen), display (prescription, anticoagulation, pressures), 13: blood leak detector (BLD; indicates leakage of erythrocytes; can be caused by filter rupture [e.g. due to too high TMP]), 14: connection for MARS system (as additional module in acute liver failure), 15: syringe with calcium, 16: connection for heparin (if anticoagulation is performed with it [In our clinic it is performed with citrate.])

Settings

(example for Prismaflex Gambro Hospal)

- substitute: Kalilactasol (electrolyte solution with lactate and potassium)
- filter: Prismaflex M 100 (Pre)
- dilution method: predilution
- blood flow rate: start with 80 ml/h and increase to at least 150 ml/h
- anticoagulation:
 - unfractionated heparin (UFH)
 - 10,000 IU of UFH in 20 ml normal saline syringe \rightarrow 500 IU/ml

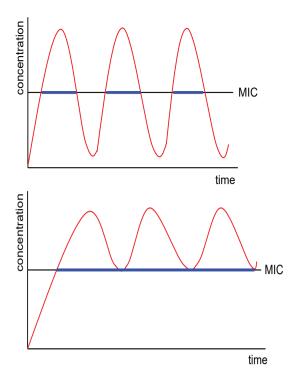
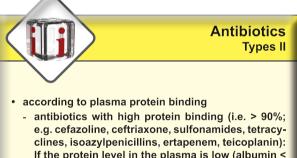
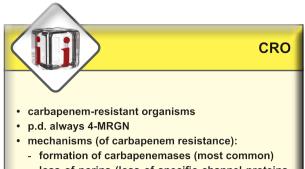



Fig. 1467 The pharmacodynamics of time-dependent antibiotics are shown here. The time in which the concentration is above the MIC (minimum inhibitory concentration) is decisive for their effectiveness. This time (in the graphic shown in blue) is significantly shorter with only three bolus doses (top) than with prolonged infusions (bottom) or even continuous administration.


- If the protein level in the plasma is low (albumin < 25 g/dl), these antibiotics are increasingly eliminated. Here the dose has to be increased! A For example, the dose of ceftriaxone must be doubled if serum albumin is low, that means 2 x 2 g instead of just 1 x 2 g have to be administered!).
- antibiotics with low protein binding
- according to elimination
 - renal (60%): In critically ill patients, they should not be underdosed because of false regard to the kidneys. You should also be careful if the GFR is increased (> 130 ml/min; frequently hyperdynamic circulation in the initial phase of sepsis): Here the renal clearance is increased (augmented renal clearance [ARC]) so that the dose has to be increased! This applies especially to β -lactams. If GFR > 130 ml/min, e.g. piperacillin / tazobactam has to be administered 4-5 times a day.
 - hepatic (40%)

Antibiotics Classes

- penicillins
- cephalosporins (not effective against "LAME": <u>L</u>isteria, <u>A</u>typical [legionella, chlamydia, mycoplasma] pathogens, <u>M</u>RSA [exception: 5th generation] and <u>E</u>nterococci)
 - oral (note: almost no oral bioavailability and therefore almost no importance)
- parenteral
- carbapenems
- monobactams: aztreonam (Azactam)
- fluorchinolones (gyrase inhibitors)
- macrolides
- aminoglycoside
- oxazolidinones
- linezolid (Zyvoxid)
- tedizolid (Sivextro)
- radezolid
- glycopeptides
- vancomycin
- teicoplanin (Targocid)
- lipoglycopeptides
 - telavancin (Vibativ)
 - dalbavancin (Xvdalba)
 - oritavancin (Orbactiv)
- tetracyclines
- tetracyclin
- minocyclin (Minocin)
- doxycyclin (Vibravenoes)
- glycylcyclines: tigecycline (Tygacil)
- polymyxines
 - polymyxin B
 - polymyxin E (= colistin)
- other:
 - sulfonamides (folic acid antagonists): cotrimoxazole (trimethoprim sulfonamide [Bactrim, Cotrim])
 - lipopeptides: daptomycin (Cubicin)
 - lincosamides: clindamycin (Sobelin)
 - nitroimidazoles: metronidazole (Clont)
 - nitrofuranes: nitrofurantoin
 - epoxides: fosfomycin (Infectofos)
 - ansamycines: rifampicin (Eremfat)
 - streptogramines: quinupristin-dalsopristin (Synercid)

Excursus: Carbapenem-resistant organisms (CRO)

- loss of porins (loss of specific channel proteins, especially in case of pseudomonas)
 offlux numps that activally nump the antibiotic out
- efflux pumps that actively pump the antibiotic out of the bacterium
- types:
 - carbapenem-resistant enterobacteriaceae (CRE; 25%; most common carbapenemase: OXA-48)
 - carbapenem-resistant non-fermenters (75%)
 pseudomonas aeruginosa (60%; most common carbapenemase: VIM-2)
 - acinetobacter baumanii (15%; most common carbapenemase: OXA-23)

CRE

- Carbapenem-resistant enterobacteriaceae (especially klebsiella pneumoniae [most common CRE], escherichia coli)
- syn.: carbapenemase-producing enterobacteriaceae (CPE)
- proportion only 2-3% in Germany (more often in Greece, Italy, Turkey, Malta, Israel, USA, India, Iran, Iraq, Egypt, China, Thailand, Japan), but significant increase in Germany
- · They will be the largest problem in the future!
- obligation to report according to §7 Infection Protection Act (IfSG) in Germany
- A mortality: 50% (Correa et al, BMC Inf Dis 2013), 4-fold increased mortality
- carbapenemases (Ambler classification [according to the British molecular biologist Richard Penry Ambler [1933-2013]):
 - class A: e.g. klebsiella pneumoniae-carbapenemase (KPC)
 - class B (most dangerous; only effective here: tigecycline [but only an option for uncomplicated intraabdominal infections], combination aztreonam + avibactam [contained in Zavicefta: ceftazidime + avibactam] or cefiderocol)
 - VIM (Verona integron encoded metallo-betalactamase; most common)
 - NDM (New-Delhi-carbapenemase)
 - IMP (imipenemase)
 - class C (e.g. AmpC)
 - class D (e.g. OXA-48 [oxacillinase])
- Carbapenemasen are β-lactamases:

- class A, C and D: serin-β-lactamases (SBL)
- class B: metallo-β-lactamases (MBL)
- the most common carbapenemases in Germany: OXA-48 (No.1), VIM (No.2), KPC (No.3), NDM (No.4)

Therapy

- polymyxins
 - colistin (the "backbone" [basis] of CRE therapy! renaissance! see page 1266)
 - polymyxin B
- tigecycline
 - for CRO in double dosage (loading dose 200 mg, then 100 mg 2 x daily i.v.; not officially approved for this dosage)
 - also effective against metallo- β -lactamases (Ambler class B)
 - but not for sepsis or urinary tract infection since insufficient levels are achieved, furthermore off-label in pneumonia; therefore only recommended for uncomplicated intraabdominal infections (Gales et al, Clin Infect Dis 2021)
- ceftazidime + avibactam (Zavicefta): The β-latamase inhibitor avibactam is very effective against CRE (especially against KPC [i.a. CRACKLE study: van Duin et al, Clin Infect Dis 2018] and OXA-48; however, not effective against metallo-β-lactamases [Ambler class B]: As an option, however, you can combine ceftazidime / avibactam with the monobactam aztreonam [not available in Germany] here [Marshall et al, Antibiol Agents Chemo 2017]).
- carbapenem as combination partner to colistin or fosfomycin (actually absurd; also recommended only for MIC < 8 mg/l; for CRO in double dosage [e.g. meropenem 3 x 2 g])
- meropenem + vaborbactam (Vabomere)
 - vaborbactam:
 - a new β-latamase inhibitor with effectiveness against carbapenemases (especially KPC)
 - boric acid derivative
 - approved by the FDA (USA) 2017 and by the EMA (EU) 2018 as a reserve antibiotic for complicated urinary tract infections (including pyelonephritis) caused by klebsiella pneumoniae, escherichia coli or enterobacter cloacae
 - dosage: 2g/2g 3 x daily. as short infusion over 3 hours
 - dose reduction:
 - renal insufficiency:
 - GFR 30-50 ml/min: 1g/1g 3 x daily
 - GFR 15-30 ml/min: 1g/1g 2 x daily
 - GFR < 15 ml/min: 0.5g/0.5g 2 x daily
 - hepatic insufficiency: no dose reduction necessary
 - approval study: TANGO I/II
- Recarbrio = imipenem + cilastatin + relebactam
 - cilastatin: an inhibitor of dehydropeptidase in the kidney that prevents the renal inactivation of imipenem
 - relebactam: a new β -latamase inhibitor with activity against carbapenemases of classes A and C (not active against classes B and D)

Pathogens

- plasmodium falciparum
- plasmodium malariae
- plasmodium vivax
- plasmodium ovale
- · plasmodium knowlesi
 - initially discovered in macaques (Javanese monkeys) in Singapore; transferable to humans
 - named after British parasitologist and the malaria researcher Robert Knowles (1883-1936)
 - especially in Southeast Asia (especially in Malaysia: Plasmodium knowlesi is already the most common malaria pathogen there!)
 - A frequently severe courses (fulminant!)
 - difficult to differentiate microscopically from other plasmodia species (mostly only molecular biologically, i.e. by PCR)
 - therapy like tropical malaria (artesunate also the first choice for complicated form)

Types

- benign forms (1/3):
 - quartan malaria (plasmodium malariae)
 - tertian malaria (plasmodium vivax / ovale)
- malignant form (2/3): tropical malaria (plasmodium falciparum)

Incubation periods

- tropical malaria: 12 days
- tertian malaria: 12-18 days
- quartan malaria: 3-6 weeks (longest incubation period)
- notes:
 - A feverish disease < 7 days after return (except after a stay of several weeks) is usually not malaria (minimum incubation period of malaria 1 week, mean incubation period 1 month).
 - but also incubation period longer than several months possible, so that stays abroad in malaria areas are still relevant up to 2 years back!

Pathogenesis

- Humans and anopheles mosquitoes are the only reservoir of pathogens.
 - mosquito: end host (here sexual phase [= gamogony])
 - human: intermediate host (here asexual phase [= schizogony])
- Anopheles mosquitoes (female form) use their saliva to transmit the sickle germs (sporozoites) into the blood of humans during bites.
- first infestation of the liver (short liver phase [5-8 days]; liver schizont), then infestation of the erythrocytes (erythrocytic phase)
- in erythrocytes multiplication and maturation (schizogony; blood schizont) → bursting of erythrocytes (hemolysis) and release (merozoites) → infestation of further erythrocytes and multiplication
- synchronization of intraerythrocytic parasitic growth \rightarrow

fever attacks every two (tertian malaria) or three days (quartan malaria)

- After some cycles, the sexual forms develop (sex form = gametocyte) → infection of the anopheles mosquito
- in synchronization (not the case with plasmodium falciparum) of parasite development: fever
- In tertian malaria (plasmodium vivax and plasmodium ovale), resting forms in the liver (hypnozoites) can remain asymptomatic for years and then lead to relapses. Therefore a final therapy with primaquine is necessary here!
- In tropical malaria there are no liver forms, therefore relapses are not possible in this type of malaria!
- special property of plasmodium falciparum: alteration of the erythrocyte surface (e.g. production of PfEMP1: plasmodium falciparum infected erythrocyte membrane protein 1) → "bonding" of erythrocytes (sequestration)

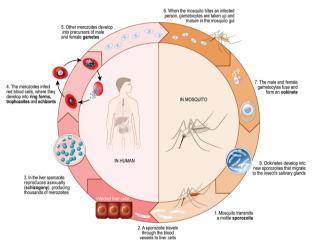


Fig. 1634 Life cycle of plasmodia (malaria cycle): Asexual reproduction (schizogony) takes place in human: First the hepatocytes (exoerythrocytic phase) and then the erythrocytes (erythrocytic phase) are infected. Sexual reproduction (gamogony) takes place in the anopheles mosquito. After the mosquito bite, the sporocytes (infectious forms of the pathogen) get from the saliva of the mosquito into the human blood. There they multiply in the liver (liver schizonts) and in the erythrocytes (blood schizonts). The liver schizonts disintegrate into numerous merozoites which then infect the erythrocytes. Finally, gametocytes (immature germ cells) develop which are ingested by the anopheles mosquito when it bites (blood meal). In the gut of the mosquito, these mature into gametes (mature germ cells). The female (macrogamete) and male (microgamete) gametes fuse to form the ookinet, from which the sporocytes then develop (sporogony).

Symptoms

- fever (This should be kept in mind even up to 2 years after a stay in the tropics!)
 - quartan malaria: 1 day fever, 2 days no fever
 - tertian malaria: 1 day fever, 1 day no fever
 - tropical malaria: fever irregular
- chills
- headache (typically severe!)
- back pain

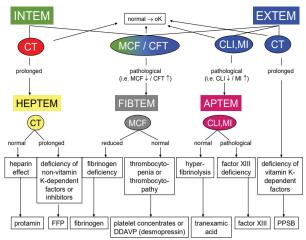
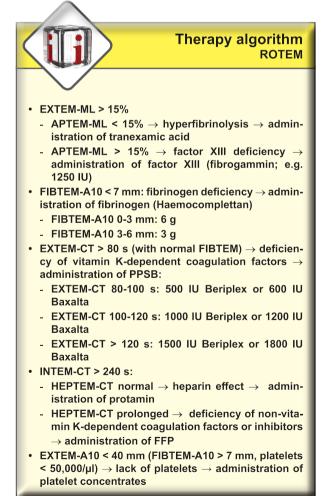



Fig. 1671 Interpretation of ROTEM (procedure for acute diffuse bleeding); as an alternative to fibrinogen deficiency, it can also be a fibrinogen polymerisation disorder (i.e. factor XIII deficiency); note: In the case of active bleeding despite normal CT and MCF in EXTEM and INTEM, the following should be considered or checked: co-factors (general conditions such as hypothermia, metabolic acidosis, hypocalcemia), presence of bleeding that can be stopped surgically, von Willebrand disease, thrombocytopathy due to platelet inhibitors (e.g. ASA)

Limitations

- thrombocytopathies (e.g. thrombasthenia Glanzmann [absence of GIIb/IIIa receptors])
- platelet inhibitors (ASA, clopidogrel, prasugrel, ticagrelor)
- von Willebrand disease
- factor XIII deficiency
- GpIIb-IIIa receptor antagonists (especially abciximab)
- only relatively low sensitivity for oral anticoagulants (e.g. VKA [coumarins]; NOAC, however, have no influence on the measured values), LMWH, danaparoid (Orgaran) and fondaparinux (Arixtra)
- · no standard validation (yet) using round robin tests

Multiplate

Definition

- multiple platelet function analyzer (Roche company)
- measurement of platelet function (for overview of possible methods: see infobox)
- method: impedance aggregometry
 - Platelets are activated and aggregated at the surface of a sensor wire leading to an increase in electrical resistance (impedance). This resistance is measured.
 - measurement of the increase of the impedance as area under the curve after activation of the platelets
- can be performed on the bedside (e.g. in the emergency room, intensive care unit or operation room) as POCT (point of care testing; results within 10 minutes)
- · material: whole blood
- · 4 channels for different activators:
 - TRAP (thrombin receptor activating peptide; basic stimulability of platelets)
 - collagen (physiological stimulability of platelets)
 - arachidonic acid (measured value < 250 AUC: good ASA effect)
 - ADP (adenosine diphosphate; measured value < 200 AUC: good clopidogrel effect [responder])
- only valide with a normal account of platelets and erythrocytes (applies to all methods of measuring platelet function)

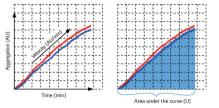


Fig. 1672 In the Multiplate system, the impedance increase is measured as an area under the curve (AUC) of aggregation time after activation of the platelets [41].

ONCOLOGICAL MERCENCIES

Introduction

The decision whether to transfer a critically ill patient with an underlying hemato-oncological disease (especially AML, autologous / allogeneic stem cell transplantation, non-Hodgkin's lymphoma) to an intensive care unit or not is often not easy in clinical practice. In chronically bedridden patients (> 3 months), lack of a life-prolonging therapy option, uncontrolled or refractory GvHD or an overall prognosis of less than one year, the intensive care admission must certainly be considered very critically. Life and not suffering should be prolonged. 20% of all intensive care patients have cancer. In a sample prevalence study (Kochanek et al, Med Klin Intensivmed Emergency Med 2020), every fourth patient in ICU or IMC in Germany had cancer. The most common cause for admitting a hematological-oncological patient to ICU is acute respiratory insufficiency (mostly due to pneumonia; No. 2: sepsis; especially neutropenia). Early noninvasive ventilation is particularly important here: It leads to a significant reduction in mortality (Hilbert et al, N Engl J 2001; Molina et al, Crit Care 2012) and should be used early to avoid intubation. However, another study (Lemiale et al, JAMA 2015) could not show any mortality reduction in cancer patients with acute respiratory insufficiency (mostly due to pneumonia) by using NIV compared to pure oxygen therapy. In the EFRAIM study (Azoulay et al, Intensive Care Med 2017), NIV was also unable to reduce the intubation rate or mortality. HFNOT (high-flow nasal oxygen therapy) was also unable to reduce the intubation rate or mortality in immunosuppressed patients (HIGH study [Azoulay et al, JAMA 2018]).

Intensive-care mortality is determined by organ dysfunction and not by malignancy. Malignancy determines the long-term mortality. If the acute problem leading to ICU admission is being survived, the prognosis is exactly the same as before ICU admission. They practically return to their initial prognosis before the intensive care stay.

In the German iCHOP registry (intensive care medicine in hematologic and oncologic patients; mean age 62 years; 2/3 hematologic and 1/3 oncologic disease), acute respiratory failure was the most common reason for admission to the intensive care unit. The ICU mortality was 58% and the hospital mortality was 45%.

The prognosis of critically ill cancer patients has improved considerably in recent years (i.a. Darmon et al. Intensive Care Med 2019): Mortality has been reduced by 30% (absolute risk reduction) over the last thirty years (i.a. Gristina et al, Crit Care Med 2011). Long-term survival is possible with some tumors even in the metastatic stage (e.g. in metastatic malignant melanoma: 20% still live 10 years). Therefore, a generally restrictive ICU admission policy for cancer patients should be abandoned. In addition, the emergency and intensive care physician is often unable to make an adequate assessment of the prognosis due to the time pressure of the emergency situation, incomplete informations and possibly also a lack of knowledge of the underlying disease. Patients with advanced solid tumors should also be treated with full code management both according to the recommendations of an international team of experts (Azoulay et al, Ann Intensiv Care 2011) and according to the consensus recommendations of German-speaking intensive care and hematological-oncological societies (Kiehl et al, Ann Hematol 2018) if a life-prolonging oncological therapy option still exists. This includes, for example, patients with colorectal cancer with liver metastases, who have currently a survival time of approximately 30 months with modern chemotherapy. In principle, full code management is indicated in sace of remission, existing curative therapy approach or newly diagnosed cancer (prognosis > 1 year). On the other hand, patients with "common diseases" are often admitted to ICU ("without batting an eyelid"), although the prognosis which is unfortunately often unknown to many, is sometimes considerably worse than for many cancers: e.g. heart failure (5-year-survival rate 50%), COPD (GOLD IV: 5-year survival rate 30%) or liver cirrhosis (Child C: 1-vear survival rate 50%). Furthermore, the fact that a palliative patient is still young is also not a sufficient reason alone for ICU admission ("Oh, he's still so young!"). Children also die of cancer!

Intensive mortality is determined by organ dysfunction and not by malignancy!

no generally restrictive ICU admission policy towards cancer patients! piperacillin / sulbactam] in addition to immunosuppressive therapy):

- methylprednisolone (after exclusion of an infectious cause; here for 8 and not just for 4 weeks)
- if refractory: infliximab (very good option here!), mycophenolate mofetil, cyclophosphamide
- pleuritis
- renal (in 3%; possibly acute kidney failure):
 - interstitial nephritis
 - glomerulonephritis
- neurological (in 2%):
 - tremor
 - ataxia
 - seizures
 - PNP (peripheral polyneuropathy)
 - Guillain-Barré syndrome (GBS)
 - myasthenia gravis
 - meningitis, encephalitis
 - myelitis
- musculoskeletal:
 - myositis (possibly rhabdomyolysis)
 - fasciitis
 - arthritis (therapy: possibly MTX, TNFα blockers)
- ophthalmological: especially uveitis (most common), conjunctivitis, episcleritis, keratitis, retinitis (up to blindness), optic neuritis, inflammation of the orbit, endocrine orbitopathy
- hematological:
 - hemolysis
 - anemia, leukopenia, thrombopenia (pancytopenia)
 - thrombotic microangiopathy (TMA)
 - hemophilia
 - arteritis
- psychical: fatigue (very often [in 25%]!)

CAR-T-cell therapy

Definition

- syn.: adaptive T-cell transfer
- new form (ATMP [advanced therapy medicinal products]) of cancer therapy (immunological, gene therapy; only offered by corresponding specialized centers)
- CAR: chimeric antigen receptor (synthetic hybrids of receptor and signal units to target T-cells against target proteins of tumor cells [especially malignant B-cells])
- discovery and development by the Israeli immunologist Zelig Eshhar at the Weizmann Institute in Rechovot (Israel) in the late 1980s ("T-body", "immune receptor")
- The patient's own T-cells are modified ex vivo in such a way that they express chimeric antigen receptors on their surface that are directed against a cancer-specific antigen (most commonly CD 19) of malignant cells (mostly B-cells) and then destroy them.
- detection independent of the MHC (major histocompatibility complex; HLA [human leukocyte antigen] system)
- The CAR-T-cells are produced individually for each patient. The production takes about 4 weeks.
- This therapy was first carried out in a 6 year old girl (Emily Whitehead from Pennsylvania, USA). At the age of 5, she developed acute lymphoblastic leukemia (ALL) and received intensive chemotherapy. The second relapse occurred at the age of 6 so that all conventional therapy options were exhausted. The parents agreed to an experimental CAR-T-cell therapy which was carried out for the first time in 2012. The girl is now (2023) 15 years old and completely tumor-free.
- indications (if refractory or relapsed):
 - lymphomas (B-cell non-Hodgkin lymphomas; adults)
 - diffuse large B-cell lymphoma (DLBCL)
 - primary mediastinal large B-cell lymphoma (PMB-CL)
 - transformed follicular lymphoma (tFL)
 - acute lymphoblastic leukemia of the B-cells (B-ALL; exactly: BCP-ALL [B-cell precursor]; children)
- · very effective ("revolutionary"): response rates
 - diffuse large B-cell lymphoma: 82%
 - B-cell ALL: 90%
- procedure: The tumor cells are often not recognized by the normal T-cells. Here, the patient's T-cells (autologous) are removed by leukapheresis and sent to a special laboratory. There they are genetically modified via gene transfer so that they can now recognize the malignant B-cells better. The gene transfer (transduction) takes place with the help of a virus (viral vector; mostly lentivirus or retrovirus) which smuggles in the genetic information for an antigen receptor that has the ability to recognize the target protein (e.g. CD19) on the surface of the malignant B-cells. In order to have a sufficient number of T-cells available for therapy, amplification takes place which usually lasts 2-3 weeks. After the patient has been appropriately prepared by lymphocyte-depleting chemotherapy, the modified Tcells are finally returned to the patient (re-transfused). Since the T-cell receptors are built partly from their own and partly from foreign (synthetic) genetic material, they are referred to as "chimeric" (chimera: a hybrid

flutter (significantly lower cardioembolic risk than atrial fibrillation)

- anterior wall aneurysm (e.g. after a large anterior wall myocardial infarction)
- paradoxical embolism in patent foramen ovale (PFO)
- endocarditis
- aorto-arterial (plaques / atheromas of the ascending aorta or aortic arch; especially from size > 4 mm)
- vasculitis (very rare; CNS vasculitis; should be kept in mind especially in younger patients without cerebrovascular risk factors)
 - primary CNS vasculitis (PACNS: primary angiitis of the CNS)
 - secondary CNS vasculitis (infect-associated or non-infect-associated, e.g. Horton's disease, Takayasu's disease)
- antiphospholipid syndrome (20% of all patients < 45 years [Every 5th stroke patient who is younger than 45 years has an antiphospholipid syndrome!])
- Moyamoya disease (progressive, genetically determined fibrosis with severe stenosis or occlusion of the distal internal carotid artery and middle cerebral artery with formation of pronounced collaterals that look like "fog" or "smoke" [Japanese: moyamoya] in the angiogram; especially children and young people; especially in Asia)
- unknown (40%)
- thrombotic; especially microangiopathic:
 - 1/3 of all ischemic strokes!)
 - typical in older patients with arterial hypertension and diabetes mellitus
 - lacunar infarctions (p.d. subcortical infarction in the territory of the small cerebral arteries with a maximum extension of 1.5 cm in the CT or 2.0 cm in the MRI)
 - in CCT mostly not visible, in MRT tiny, mostly subcortical located lesions
- hemorrhagic (intracranial bleeding; 20%)

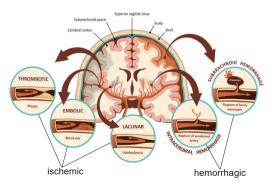
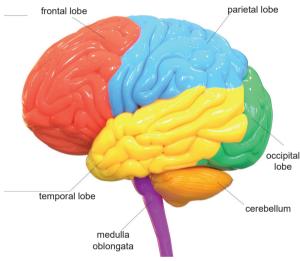



Fig. 1710 the different types of stroke

Symptoms

- hemiparesis (predominantly arm weakness; facial palsy [central])
- · hemihypesthesia, hemiparesthesia

- visual disturbances
 - amaurosis fugax (ipsilateral)
 - homonymous hemianopsia (contralateral visual field)
- conjugate eye deviation (CED) to the ipsilesional (nonparetic) side
- dysarthria (speaking disorder)
- aphasia (speech disorder)
 - motor aphasia (syn.: Broca aphasia, expressive aphasia, non-fluent aphasia): disorder of speech production
 - sensory aphasia (syn.: Wernicke aphasia, receptive aphasia, fluent aphasia): disorder of speech comprehension
- somnolence, coma
 - A absolutely untypical for ischemic stroke of the anterior circulation (only in malignant media infarction)
 - Think of other differential diagnoses (hemorrhagic stroke [intracranial bleeding], basilar thrombosis, postictal after epileptic seizure)!

Fig. 1711 Brain: anatomy

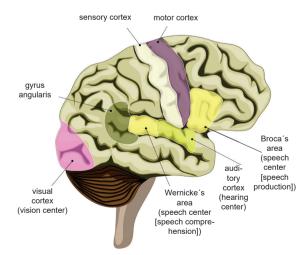


Fig. 1712 Brain: function



Fig. 1772 CCT: right-sided epidural hematoma - typically temporal and lenticular (courtesy of PD Dr. K.-M. Schebesch, Senior Physician of the Department of Neurosurgery, University Hospital Regensburg [Germany])

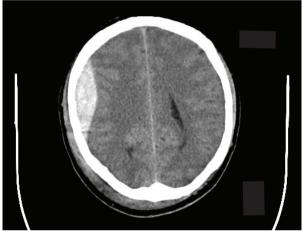


Fig. 1773 CCT: right-sided temporal epidural hematoma

Symptoms

- after traumatic brain injury (TBI) with disturbance of consciousness (commotio cerebri) typically free interval, then renewed disturbance of consciousness
- · hemiparesis (contralateral)
- · headache
- vomiting
- · psychomotor restlessness
- seizure
- anisocoria (ipsilateral)
- often rapid neurological deterioration ("talk and die")

Complications

- increase in intracranial pressure (ICP) with herniation and decerebration
- hemorrhagic shock due to bleeding into the galea (especially in children)

Therapy

- emergency surgery (trepanation and haematoma evacuation)
- indication for surgery i.a. if the hematoma is larger than the width of the calotte

- if no neurosurgery is available in the hospital:
- relocation (transfer to a hospital with neurosurgery; best)
- if necessary Kroenlein burr hole trepanation (two relief holes in the temporal region at eyebrow level anterior and posterior to the ear; named after the Swiss surgeon Rudolf Ulrich Kroenlein [1847-1910])

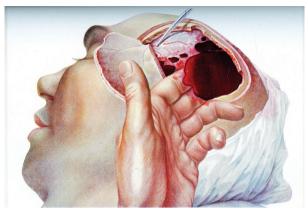


Fig. 1774 hematoma evacuation

Subdural hemorrhage (SDH)

Definition

- bleeding in the subdural space (= space between hard meninx [dura mater] and arachnoid mater)
- a venous bleeding (slowly expanding; tear of bridging veins)
- frequent in elderly people
 - incidence at age > 65 years: 60/100,000
 - reason: Due to the increasing brain atrophy with age, the traction on the bridging veins and thus the risk of rupture also increases.

EPIDURAL HEMATOMA VS SUBDURAL HEMATOMA

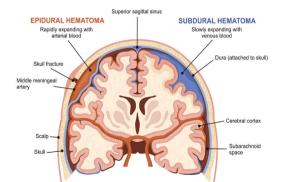
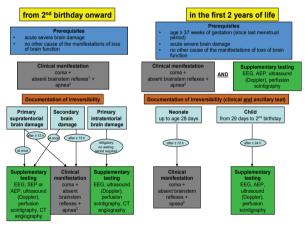


Fig. 1775 Difference between epidural and subdural hematoma: While the epidural hematoma (red; bleeding between the skull bone and dura mater) is an arterial bleeding (from the middle meningeal artery; almost always result of a trauma with skull fracture) which therefore expands rapidly and increases in size with a space-occupying effect, the subdural hematoma (bleeding between the dura mater and arachnoid mater) is only a venous bleeding with correspondingly slow expansion.

In the case of infratentorial brain damage, irreversibility must always be proven by an additional ancillary tests!

Annotations

- In the case of combined brain damage, the most conservative procedure is always indicated: In a combination of primary supratentorial and infratentorial brain damage, the same procedure is used as for primary infratentorial brain damage, i.e. the proof of irreversibility by the observation period is not permissible and therefore an ancillary test is always indicated. A combination of primary supratentorial and secondary brain damage is treated in the same way as isolated secondary brain damage (i.e. observation period 72 hours).
- For children up to the age of 2 years, both the clinical and the instrument-based diagnostics (ancillary test) must always be repeated.



in children up to the age of 2 years, proof of irreversibility always clinical AND instrumental (ancillar)!

Ancillary tests (instrument-based diagnostics; supplementary testing)

- EEG (most common)
 - at least 8 channels, sensitivity of 2 μV/mm
 - detection of a zero line ("brain-electric silence") for at least 30 minutes
 - In practice, it is often difficult to obtain a continuous zero line (without artifacts) with the newer (very sensitive) EEG devices. Therefore one should consider to use a rather older EEG device for brain death diagnostics.
 - Artifacts (e.g. from devices, infusions, muscle activity, spinal automatisms) should be taken into account, if necessary a muscle relaxant must be administered (but only after the clinical examination).
- evoked potentials (only possible with supratentorial brain damage, not with infratentorial brain damage)
 - auditory (AEP; standard)
 - somatosensory (SSEP; median nerve)
 - not possible with diseases in which the conductivity of the peripheral nerves is disturbed (e.g. polyneuropathies, damage of cervical medulla)
 - only permitted from the age of 2 years
- proof of cerebral circulatory arrest (independent of drug effects; prerequisite: MAP > 60 mmHg; all 3 methods are also possible with vv-ECMO, but not with va-ECMO.)
 - Doppler sonography (transcranial)
 - mostly fastest available (means of choice)
 - $\,\circ\,$ at least 2 examinations at interval of 30 minutes
 - $\circ~$ if necessary with contrast agent (e.g. SonoVue)

- lack of flow signal or detection of oscillating flow (biphasic)
- However, residual perfusion (e.g. in open traumatic brain injury or osteoclastic trepanation) does not contradict the diagnosis of brain death.
- perfusion scintigraphy
 - tracer: Tc-HMPAO (hexamethylpropyleneamineoxime)
 - diagnosis and evaluation by a specialist in nuclear medicine
- angiography:
 - conventional angiography (only by a specialist in radiology): obsolete today
 - · CT angiography:
 - now approved in the guidelines since 2015 (but only for adults [age > 18 years], not for children)
 - A missing contrast of the cerebral arteries of the brain base (anterior cerebral artery, middle cerebral artery, posterior cerebral artery as well as basilar artery on both sides) is required with detectable extracranial perfusion.
 - diagnosis and evaluation by a specialist in radiology with several years of experience in neuroradiological diagnostics (preferably neuroradiologists)

1: If not all of the required clinical deficits are testable, supplementary anciliary testing is obligatory. 2: If apnea test cannot be performed or if initial paCO₂ > 45 mmHg, the loss of brainstem function must be additionally documented by the proof of cerebral

Fig. 1847 Diagnostics of brain death (irreversible brain function loss)

Confusions

- Lazarus sign
 - Lazarus: in the biblical story (Gospel of John) the human being who was brought back to life by Jesus four days after his death
 - Lazarus sign: movement of a person declared dead
 - occurrence in brain-dead patients: in 50% (frequent-ly!)
 - Brain-dead patient often show sudden movements, especially of the upper extremities which often unsettle physicians, nurses and especially relatives completely. These are only spinal reflex automatisms and are no sign that the patient is still alive. If they occur frequently, the patient may have to be treated with a muscle relaxant (after brain death has

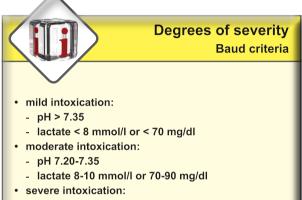
 laser ablation (laser hair removal): Toxic substances such as carbon monoxide and cyanide might be released with potential risk for physicians and patients (Chuang et al, JAMA Dermatol 2016). Smoke outlet and airing must therefore be ensured.

Etiology

- smoke gas from burning plastic, textiles (most common cause; especially at low combustion temperature [smoldering])
- · accident in electroplating plants
- suicide / homicide (murder) with potassium cyanide

most common cause of cyanide intoxication: smoke inhalation in a fire! most common cause of death from smoke inhalation: cyanide intoxication!

Symptoms


- bitter almond odour (cannot be smelled by everyone [only approximately 40%; determined genetically])
- headache
- A rosy skin color (as in case of CO intoxication; despite hypoxia; pulse oximeter also shows high saturation!)
- nausea, vomiting
- · abdominal pain (colics)
- dizziness
- · dyspnea (agonizing breathlessness without cyanosis!)
- angina pectoris (due to the lack of oxygen; often also ST elevations in the ECG)
- mydriasis
- 🔔 bradycardia (typical sign)
- tachypnea
- · impaired consciousness, coma
- seizures (due to hypoxia; tonic-clonic)

Laboratory

- metabolic acidosis
- severe lactic acidosis due to blockage of the enzymes of the respiratory chain
- Carbon monoxide intoxication usually does not lead to an (pronounced) increase in lactate (but it can also occur here as a result of hypoxemia). If lactate is also increased during smoke inhalation (e.g. during a fire), it is very likely that there is also cyanide intoxication in addition to carbon monoxide intoxication! A lactate > 90 mg/dl (> 10 mmol/l) in the context of smoke gas intoxication is a very sensitive and specific sign of cyanide intoxication.
- degrees of severity according to pH value and lactate (are available immediately; Baud criteria [according to Baud et al, Crit Care Med 2002; see infobox])
- determination of the cyanide level in the serum
 - due to the short half-life immediately and before the

administration of the antidote

- mostly not available immediately
- only retrospectively to confirm the diagnosis, no influence on acute therapy
- A If (in the context of a domestic fire) the CO-Hb (carboxyhemoglobin) value is high (> 25%), the cyanide level is also always high (good correlation), i.e. the antidote should be administered generously here.
- degrees of severity according to the cyanide level:
 - < 1 mg/l: mild intoxication
 </p>
 - 1-3 mg/I: moderate intoxication
 - > 3 mg/l: severe intoxication (mostly lethal)

- pH < 7.20
- lactate > 10 mmol/l or > 90 mg/dl

smoke gas intoxication with increased lactate: cyanide poisoning!

Therapy

- administration of highly dosed oxygen, if necessary endotracheal intubation and mechanical ventilation with FiO₂ of 1.0
- in case of oral uptake (ingestion; very rarely; let patient drink or insert a gastric tube):
 - 300 ml potassium permanganate solution (1:5,000; pink colour) to oxidize the cyanide or (if not available)
 - activated charcoal, laxatives
- lactic acidosis \rightarrow sodium bicarbonate 8.4%, if necessary hemodialysis
- antidotes:
 - 4-DMAP (dimethylaminophenol)
 - hydroxycobalamin (Cyanokit)
 - sodium thiosulfate 10% (S-Hydril)

4-DMAP

- dimethylaminophenol
- mechanism of action:
 - a methemoglobin producer
 - oxidizes Fe2+ to Fe3+ in the hemoglobin (intentional

ularly at risk. For this reason, the rescue service staff has already been equipped with portable gas warning devices for their own protection in the most rescue service districts.

- mortality: 30-40%
- S2k guideline "Diagnostics and therapy of carbon monoxide poisoning" of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) 2021

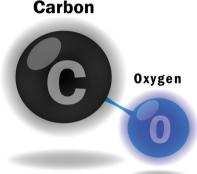
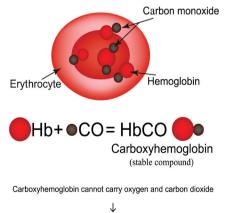



Fig. 1929 carbon monoxide (CO)

Pathophysiology

- blockage of the oxygen transport: Carbon monoxide has a 200 times higher affinity for divalent iron in hemoglobin than oxygen resulting in competitive displacement.
- blockage of oxygen utilization in the cell by inhibiting the cytochrome oxidases in the mitochondrial respiratory chain
- shift of the oxygen binding curve to the left with consecutive reduced oxygen release to the tissue
- blockage of the oxygen binding not only in hemoglobin, but also on myoglobin (40 times higher affinity; heart / skeletal muscles)
- Due to the low ischemia tolerance, the brain and heart are particularly affected.

Anoxaemia ↓ Suffocation

Fig. 1930 Carbon monoxide has an affinity for hemoglobin that is 200 times greater than oxygen, so hat CO displaces it. Carboxyhemoglobin is formed instead of oxyhemoglobin.

carbon monoxide: not only blockade of oxygen transport, but also of oxygen utilization

Occurrence

- smoke gas in case of fire
- 🗥 most frequent cause
- especially in closed rooms (typical domestic fires: 10% of carbon monoxide in the smoke gase → after 1 minutes already carbocyhemoglobin of 75 % [lethal!])
- · suicide attempts:
 - inhalation of car exhaust fumes (since the introduction of regulated catalytic converters only rarely today)
 - a suicide method widespread in the Asiatic area and now also in Germany: The suicidal person goes into the bathroom, closes the windows and seals the door from the inside with adhesive tapes. Then he lights a charcoal grill. A carbon monoxide concentration of up to 50 % then develops in the room which is usually lethal. However, this also poses a considerable risk to the arriving emergency service staff as neither smoke nor gas odour can be detected beforehand!
 - self-production (mixture of formic acid with sulphuric acid: Formic acid is degraded to carbon monoxide [Instructions for use can be found in the internet].)
- exhaust gases in poorly aired garages (i.a. suicidal; declining due to the increasing use of regulated catalysts)
- instantaneous water heater in non-aired bathrooms (typical: "found unconscious in the shower"!)
- defective gas ovens (e.g. old cokery ovens, poor room airing), defective gas boilers
- · mobile radiant heaters
- closed room with open fire (open fireplaces + defective smoke outlet!)
- · poorly maintained heating systems
- illuminating gas (still partly used as "cokery gas" in factories)
- smoking with water pipes ("shishas"): 10 times higher carbon monoxide inhalation (by burning the charcoal) than when smoking cigarettes
- wood pellets / wood chips stored improperly (especially insufficiently aired cellars): Chemical processes were initiated by shredding and drying the wood so that carbon monoxide is constantly evaporated from it. The storage rooms must therefore be well aired (i.e. cellar windows always open or installed electrical airing) and equipped with a carbon monoxide warning system.
- Also in case of intoxication with the organic solvent dichloromethane (see page 1577), carbon monoxide intoxication may occur because dichloromethane is degraded to carbon monoxide.
- laser ablation (laser hair removal): Toxic substances such as carbon monoxide and cyanide might be released with potential risk for physicians and patients (Chuang et al, JAMA Dermatol 2016). Smoke outlet and airing must therefore be ensured.

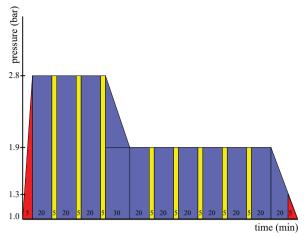
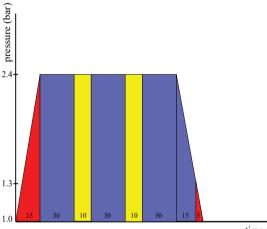



Fig. 1939 therapy scheme for diving accident and arterial gas embolism: TS 280-60 (syn.: US Navy Table 6). The time of pure oxygen breathing is shown in blue, the oxygen breaks (air breathing) in yellow and the time of breathing without a mask in red. Total duration of the session: 285 minutes

time (min)

Fig. 1940 therapy scheme for problematic wounds: TS 240-90. The time of pure oxygen breathing is shown in blue, the oxygen breaks (air breathing) in yellow and the time of breathing without a mask in red. Total duration of the session: 140 minutes

Side effects

- barotrauma
 - middle ear (tympanic membrane); in intubated and mechanically ventilated patients bilateral paracentesis (incision) necessary beforehand to equalize the pressure in the middle ear
 - lung (e.g. pneumothorax)
- oxygen toxicity (In order to reduce oxygen toxicity, most therapies include repeated short phases [socalled oxygen breaks] in which the patient only breathes air and not pure oxygen. The therapy scheme for carbon monoxide intoxication [Boerema scheme] has no oxygen breaks so that the risk of oxygen toxicity is increased here.)
 - CNS (central nervous system)
 - Paul Bert effect: toxic effect of oxygen on the CNS

- signs: dizziness, nausea, vomiting, double vision, restlessness, anxiety, paresthesia or facial spasms
- main danger: seizures (so-called oxygen seizures); therapy: Here, the breathing gas should be switched from pure oxygen to air immediately. If the seizure persists, a benzodiazepine should be administrated.
- lung
 - Lorraine-Smith effect: toxic effect of oxygen on the lungs
 - consequences:
 - ARDS (increased capillary permeability → permeability pulmonary edema)
 - decrease of functional residual capacity (FRC)
 - · increase of resistance in the small airways
 - fibrosis (but only after a very long exposure time)
- eye (e.g. temporary myopia [short-sightedness] by deformation and thus change of the refractive power of the lens, deterioration of a cataract)
- psychological (i.a. claustrophobia)
- · temperature changes:
 - During compression, the temperature in the chamber increases (just think of the air pump when you put your finger on the opening; in case of rapid compression, a temperatur of up to 50°C in the chamber may be possible).
 - During decompression, the temperature in the chamber decreases again.
- hypoglycemia

Contraindications

- An untreated pneumothorax is a contraindication for HBO. If a thoracic trauma is possible (e.g. patient fell down the stairs), an X-ray of the thorax should be performed beforehand to exclude pneumothorax. In case of pneumothorax, thoracic drainage (chest tube) should be performed prior to HBO.
- HBO is relatively contraindicated in patients with a pacemaker / AICD since the overpressure can lead to a deformation of the aggregate with consecutive loss of function. However, most of the aggregates today are also suitable for pressure chambers.
- severe obstructive pulmonary disease: Air trapping often occurs here. Trapped air might expand during decompression and cause pulmonary rupture.
- inability to equalize ear pressure (In order to assess this condition, an otoscopy is performed and the patient is asked to perform a Valsalva maneuver; if necessary, the patient is given nasal drops into the chamber)
- after intracranial surgery with inclusions of air, acute traumatic brain injury

The only contraindication for HBO in an emergency is an undrained pneumothorax!

1604

Fig. 1967 plants containing digitalis: lily of the valley

Fig. 1968 plants containing digitalis: oleander

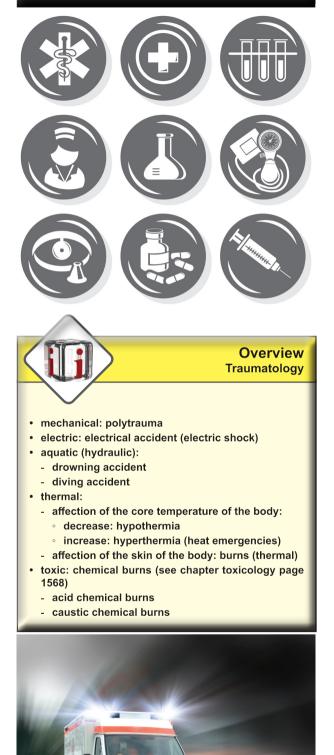
Monkshood

Definition

- syn.: wolfsbane, Devil's helmet (aconitum napellus)
- \Lambda most dangerous plant in Europe
- occurrence:
 - ornamental plant in gardens (unfortunately frequent)
 - damp meadows, brook banks, around alpine huts (Only a few plants grow there which are not eaten by cattle!)
 - use of the plant for homeopathy and TCM (traditional Chinese medicine): Cooking causes hydrolysis of the toxin aconitine. However, incorrect preparation

can lead to intoxication.

- poisonous plant of the year 2005 (highly toxic!)
- · toxin: aconitine
 - lipophilic
 - acts especially as a neurotoxin \rightarrow central respiratory paralysis
 - It causes a persistent activation of voltage-dependent sodium channels of the cell membrane (especially of the nervous system, myocardium and peripheral muscles).
- lethal dose: 5-10 mg (About 4 blossoms are enough!)
- serum level of aconitine measurable in toxicological laboratory (from > 2.6 μg/l mostly lethal)
- · history: i.a. used by Pope Clement VII for executions
- etymology (Greek mythology): The first monkshood grew on the hill aconitos (today Turkey) where Herakles dragged the hellhound Kerberos up from Hades (underworld). It was said that Kerberos had a poisonous bite and his poison dropped onto the ground and sprung up as monkshood.


Etiology

- accidental
 - ingestion of the blossoms by small children (These plants should not be planted in gardens, in which children play!)
 - confusion of the leaves of monkshood with those of parsley or lovage
- suicidal (e.g. mixing the blossoms in tea, Chinese herbal teas, ingestion of topical substances from TCM [traditional Chinese medicine])

Fig. 1969 monkshood: most toxic plant in Europe (should not be planted in gardens, in which children play)

TRAUMATOLOGY

POLYTRAUMA

Definition

- syn.: major trauma, multiple trauma, multisystem trauma
- · Greek "poly": many, "trauma": injury
- According to the Austrian trauma surgeon Harald Tscherne: simultaneous injuries to several body regions or organ systems, of which one injury or the combination is life-threatening (in short: a life-threatening multiple injury)
- according to AIS (Abbreviated Injury Scale): combination of injuries with an Injury Severity Score (ISS; see infobox; according to Baker et al, J Trauma 1974) ≥ 16 P.
- according to the Berlin definition (note: There is also a Berlin definition for the ARDS!): at least 2 injuries of severity degree 3 (according to AIS) and one of the following criteria:
 - hypotension (SBP ≤ 90 mmHg)
 - GCS ≤ 8
 - metabolic acidosis (BE ≤ -6)
 - coagulopathy (INR ≥ 1.4)
 - age ≥ 70 years
- main cause: traffic accidents
- mostly (90%) blunt injuries
- anamnestic hints for polytrauma (accident constellation):
 - fall from a height > 3 meters
 - high-speed trauma
 - rollover trauma
 - thrown out of car (ejection)
 - stuck in the car
 - heavily deformed car (especially passenger cell ["B pillar])
 - pedestrians or cyclists hit by a car
 - occupant fatally injured (dead)
 - spill
 - explosion
- procedure according to the ABCDE scheme (see infobox) according to ATLS (Advanced Trauma Life Support)

- consequences: hypervolemia (hypotonic hyperhydration), hyponatremia, hemolysis with potassium release (severe hyperkalemia) and kidney failure (due to free hemoglobin)
- drowning in salt water (hypertonic liquid [saline 2%]):
 - draws water into the lung (wet lung)
 - consequences: hypovolemia (hypertonic dehydration), pulmonary edema, hemoconcentration, hypernatremia

Epidemiology

- especially toddlers (1-4 years) and young adults (especially under the influence of alcohol and drugs)
- even possible with the shallowest water depths (e.g. water puddles, rain or water barrel, water-filled bucket)
- incidence:
 - 1-2/100,000
 - declining
- drowning sites (according to frequency):
 - rivers (No.1)
 - lakes (e.g. fall through the ice, stand-up-paddling [SUP])
 - sea
 - garden pond
 - swimming pool
 - private
 - public (outdoor, indoor)
 - other:
 - bath tub (especially for infants)
 - rain or water barrel
 - wells, water ditches
 - building excavation
 - canals, harbour basins
- · especially in the summer months and on weekends
- m > w (2:1)
- frequent accident-related cause of permanent disability and death
- third most frequent cause of death in children (among toddlers, i.e. children < 5 years, even the second most frequent cause of death [after traffic accidents, i.e. polytrauma])
- annual deaths:
 - national (in Germany): approximately 500
 - international (worldwide): approximately 450,000

drowning: the second most frequent cause of death among toddlers!


Etiology

- unattended toddlers (most common cause; e.g. child falls into insufficiently secured garden pond; e.g. toddler unattended in bathtub)
- non-swimmers
- exhaustion
- alcohol intoxication
- · epilepsy (e.g. seizure), disability (physical / mental)
- · injury when jumping into the water
- boat accident, ship accident
- swimming pool blackout: Before diving (e.g. as a "competition" with friends in the public swimming pool), hyperventilating is done consciously so that the pCO₂ drops. By venting down the pCO₂, the respiratory drive is reduced and you can dive longer. The point in time from which the rising pCO₂ exceeds the critical value, from which the respiratory drive and thus the ascent is forced, is delayed. Hypoxemia causes almost no respiratory drive, only hypercapnia. However, hypoxemia can cause the diver to become unconscious.
- suction pumps in swimming pools: If they are insufficiently secured (e.g. in hotel pools on vacation, wave pool), children in particular can be sucked in over the grids under water (especially through their hair) and drown while diving.

Pathophysiology

- initial panic reaction with frantic automatic swimming movements (fighting for survival)
- after submersion, deliberate cessation of breathing (apnea) for 1-2 minutes
- then forced breathing due to the no longer deliberately suppressible stimulation of the respiratory center due to the pCO₂ increase (maximum breathing stimulus) with aspiration
- diving reflex:
 - reflexive laryngospasm
 - In this phase, large amounts of water are often swallowed.
 - increased hypoxemia and hypercapnia
 - usually only present in small children
- unconsciousness
- release of the laryngospasm (persists in 10% which then leads to dry drowning) \rightarrow aspiration of water
- The amount of inhaled (aspirated) water is usually low (< 22 ml/kg; the average is usually only about 10 ml/ kg). Most of it is swallowed!
- The aspiration of water leads to inactivation and washout of surfactant which causes atelectasis with intrapulmonary shunts, reduced compliance of the lung and ARDS.
- seizures (caused by hypoxia; hypoxic convulsions; asphyxiation cramps)

- ROSC (return of spontaneous circulation) within 10 minutes
- pH > 7.1
- potassium < 7.5 mmol/l

Predicting outcome of drowning at the scene: A systematic review and metaanalysis Quan et al, Resuscitation 2016

- meta-analysis of 24 cohort studies with approximately 4,000 drowning accidents
- prognostic factors (for survival and good neurological outcome):
- submersion time
 - the most important prognostic factor
 - $\circ\,$ < 5 minutes \rightarrow good prognosis (3 times higher probability of survival); > 25 minutes \rightarrow very poor prognosis
- salt content of the water: The prognosis was better for drowning accidents in salt water (sea) than in fresh water.
- Surprisingly, age (no advantage for children) and water temperature (no advantage of low water temperatures) had no influence on the outcome in this study.

50% of all resuscitated patients after a drowning accident leave the hospital alive without neurological damage!

Prophylaxis

1656

- 86% of all fatal drowning accidents in children are preventable!
- Always provide garden ponds with a child-proof fence (minimum height: 1.5 m)!
- · Never leave small children unattended near water (e.g.

open-air swimming pool, bathtub; not even if they wear inflatable armbands [water wings])!

- Provide bathtubs with non-slip surfaces and handles!
- obligatory use of life jackets when practicing water sports
- early swim training (30% of all eleven-year-old children cannot swim!)
- providing an adequate number of well-trained lifeguards in public swimming pools

DIVING ACCIDENT

Definition

- potentially life-threatening event that can occur while diving with (SCUBA: self-contained underwater breathing apparatus) or without diving equipment by a rapid reduction of the ambient pressure during the ascent phase (decompression phase)
- Pressure increases by 1 bar per 10 meters diving depth. On the water surface, an atmospheric pressure of 1 bar prevails, i.e. at 30 meters diving depth an ambient pressure of 4 bar prevails.
- The most dangerous phase during diving is the ascent phase (decompression phase): The ambient pressure decreases and thus also the solubility of the gases according to the gas laws (see page 1602; when diving with breathing air, the nitrogen [78% nitrogen contained in breathing air]) decreases continuously. Nitrogen bubbles appear which usually get into the exhaled air via the alveoli. However if the ascent occurs too quickly (failure to observe the decompression regulations ["holding times", "panic ascent"]), critical oversaturation with nitrogen bubbles in the vessels and in the tissue occurs. Free gas bubbles are formed in the blood and tissue.
- also possible when working under overpressure (e.g. civil engineering, tunnel construction [e.g. Brenner base tunnel], underground railway construction)
- The symptoms of decompression sickness usually only occur with a latency period of up to several hours

- > 60 years: 25%
- occurrence:
 - home (65%)
 - accidents at work (25%)
 - suicidal (5%)
 - other (5%; e.g. traffic accidents, abuse)

Symptoms

- pain
 - Burn pain is one of the worst pains at all!
 - The less pain, the more severe the burn!
- redness
- swelling
- · blisters (burn blisters)

Extent

- according to the percentage of the burned area (TBSA: total burned surface area) of the body surface area (BSA); is initially often overestimated]; Iife-threatening [risk of shock] from > 15% [in children from > 10%]; > 50%: mostly lethal; note: First-degree burns are not counted [only from second-degree]!):
 - rule of nines according to Wallace (each 9%; not applicable to children due to the relatively large head [The following applies to children: head 18%, trunk each front and back 18%, arms each 9%, legs each 14%, genitals 1%]):
 - head: 9%
 - trunk
 - front: 18% (2 x 9%)
 - back: 18% (2 x 9%)
 - arms: 9% each
 - legs: 18% each (2 x 9%)
 - genitals: 1%
 - palmer rule: patient's palm = 1% of BSA (also applicable to children [remember: child's palm and not the physician's palm])
- according to the depth (is initially often underestimated as it usually increases over time [phenomenon of deepening] and only develops fully after 4 days [therefore less important for the emergency physician; important especially for the subsequent surgical treatment]):
 - first-degree burn (epidermis; like sunburn): redness (erythema), pain, spontaneous healing (healing without scars)
 - second-degree burn (dermis [syn.: corium]): additional blisters
 - second-degree superficial (2a; superficial dermis): rosy wound base (still vital; hyperemic; capillarization still present [glass spatula test positive]), severe pain, spontaneous healing (healing without scars)
 - second-degree deep (2b; deep dermis): pale wound base (already dead [avital], capillarization no longer present [glass spatula test negative]), slight pain, no longer spontaneous healing (healing with scars; A therefore surgery necessary from here)

- note: Frequently, a fouth-degree burn (subdermis) is mentioned: This occurs mainly in high-voltage accidents that cause charring. Subcutaneous fatty tissue, bones, muscles, fascia and tendons are also affected here.

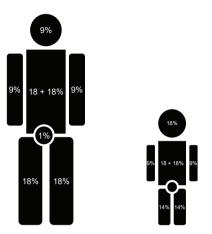


Fig. 1996 estimation of the percentage of total burned surface area (TBSA) according to the rule of nine according to Wallace: The body is divided here into sections by multiples of 9%. On the left it is shown for an adult and on the right for a child (infant: Here there are different values for the head [higher value] and the legs [lower values] compared to adults.)

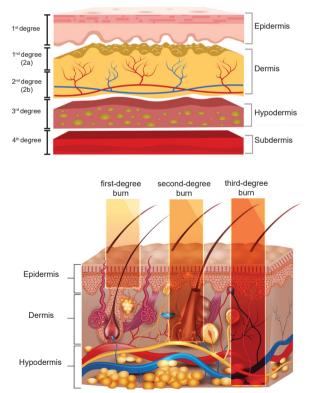


Fig. 1997 presentation of the different degrees of burns (according to the depth; based on the different skin layers)

ETHICS & LAW

Intensive care medicine has the primary goal of treating potentially reversible damage that has caused acute danger to the patient. It is intended to bridge life-threatening phases and create time for the causal therapy of the underlying disease. The patients should then be able to lead an independent and self-determined life again with an adequate quality of life. However, intensive care medicine also has its limits which should be accepted. The death of an intensive care patient must not be understood as an accident or even as a defeat. Dying should be accepted as an inevitable process. Especially at the end of life, dying with dignity and with peace must be made possible for the patient, preferably in the presence of his relatives. The natural limits of life are artificially pushed further and further by intensive care medicine. It does not make sense to do everything that can be done. The maxim "to live at any price" (rule of rescue) or "to prevent death at any price" must not apply which would only prolong an irreversible dying process. "The progress in medicine is tremendous - one is no longer sure of one's own death" (Hermann Kesten, German writer, 1900-1996). In case of hopelessness, intensive therapy is pointless ("futility"; Latin: futilis [useless, in vain]). Intensive care medicine should not be too intensive ("less is more"). It should always be questioned whether the often extremely high burden of intensive care treatment is justified at all for the patient with regard to the realistically achievable quality of life for the patient. A major problem that is common especially in the intensive care unit at the end of life, is overtherapy (oversupply), i.e. overuse of medical services. It plays a major role, especially in industrialized nations such as Germany. With 34 intensive care beds per 100,000 inhabitants (a total of approximately 28,000 intensive care beds), Germany has the highest density of intensive care beds worldwide at all. Overtherapy means the excessive use of medical services (diagnostics, therapy) which no longer lead to any relevant improvement in duration (prognosis) or quality of life, and ultimately does more harm than good ("senseless" therapy) or which is anyway not wanted or even rejected by the patient (after appropriate information). Overtherapy disregards all four basic medical ethical principles (see page 1680) and finally represents a burden for the resources of the health system. In a meta-analysis (Cardona-Morrell et al, Int J Qhal Health Care 2016) it could be shown that every third patient at the end of his life is still receiving an unjustified therapy in the sense of overtherapy. The problem of overtherapy is also taken into account in a corresponding position paper of the section for ethics of the German Interdisciplinary Association for Intensive Care and Emergency Medicine (DIVI) and German Society for Medical Intensive Care Medicine and Emergency Medicine (DGIIN) 2021 in Germany. In palliative situations, decisions must be made about limitation or discontinuation of therapy (so-called "controlled" intensive medicine; WLST: withdrawal of life-sustaining therapy). In this case, the goal of therapy is changed. This should and must also be documented clearly and unambiguously (e.g. no resuscitation, no intubation) and not only masked with acronyms (DNE: do not escalate, DNR: do not resuscitate, DNI: do not intubate, AND: allow natural death) or any drawings (e.g. "flowers") in the patient's record for unfounded fear of any legal consequences. For this we use a document (see infobox for content), on which the individual therapy limitations for the patient are clearly documented and signed by the physicians and then filed in the patient's record. Proper documentation should always be ensured. The documentation sheet on therapy limitation of the section for ethics of the DIVI (available on the homepage of the German Interdisciplinary Association for Intensive Care and Emergency Medicine [www. divi.de]) is analogous and can be recommended.

Therapy limitation Checklist

reasons:

- no more medical indication (e.g. further maximum therapy pointless, dying process has already begun)
- will of the patient (rejects intensive care therapy)
- pronounced frailty (Clinical Frailty Scale [CFS] ≥ 7; see infobox)
- other
- advance directive / health care proxy present
- team meeting or (if necessary) ethic council has taken place
- informed consent has taken place (with patient, relatives, caregiver)
- The following measures will no longer be carried out (The corresponding should be issued.):
- resuscitation
- mechanical
- electrical (defibrillation)
- ventilation
 - invasive
 - non-invasive
 - increase of invasiveness of ventilation
- extracorporeal support procedures
- catecholamine therapy (start or increase)
- renal replacement therapy
- therapy with blood products
- antibiotic therapy

The decision should and must be made by the treating physician himself and must not be left to the relatives alone which unfortunately happens very often in prac-